Computer Science

Pointers

Juan Ignacio Pérez

Pointers in C language

Definition
Pointers operators: «*» and «&»
Declaration and initialization

Operations with pointers
Assignment operations
Pointer arithmetic

Pointers types
Generic
Null
Constant

Arrays and pointers
Pointer to array
Arrays of pointers

Pointer to pointer

Pointers to structures and unions

V1.1 © Autores

Pointer definition (I)

A pointer Is a variable that contains the memory address

of another variable

It is an indirection: the variable can be accessed indirectly

It is said that a pointer points to the variable

Example:
Pointer a points to variable b

V1.1 © Autores

—r b

17

1462

1464
1463

1462
1461

1460

876
875
874
873

872 From wikibooks.org

3

Pointer definition (I1)

Pointers are a very important tool in C language
They provide fast and efficient access to arrays
They facilitate working with linked lists
They facilitate information exchange between functions

They are essential to
Assign memory dynamically
Manage files

Pointers must be used with a lot of care to avoid making
serious mistakes very difficult to find

V1.1 © Autores

Pointers operators: «*» and «&»

V1.1

The address operator «&» returns the memory
address of its operand

It can just be applied to variables and array elements
punt = &var;

The indirection operator «*» applied to a pointer
accesses the value of the variable the pointer points to

It can be used as any other variable without limitations
*punt = 7.98

Both operators «*» and «&»
Are associated from left to right
Have higher precedence than arithmetic/logic operations

© Autores

Pointers declaration and initialization ()

The declaration of a pointer variable assigns the
necessary memory to store an address

datatype *polntername;

datatype Is the type of the variable to which the pointer points

pointername IS the label of the memory position that stores
the variable address
*pointername refers to the value of that variable

The declaration does not reserve any memory for the variable

The memory size required to store an address is
always the same, independently of the data type
contained in the address

V1.1 © Autores

Pointers declaration and initialization (1)

To initialize a pointer is to make It point to a valid variable

V1.1

Variable must exist prior to pointer initialization
This does not mean that the variable must contain valid data

float *punt; /* Pointer declaration */
float var; /* Variable declaration. They
must be of the same type*/
punt = &var; /* Pointer initialization. var
still without wvalid data*/
punt = 7.98; / Variable initialization

Equivalent to var = 7.98; */

© Autores

Operations with pointers (I)

Just operations that can be made with addresses:
Assignment operations
Arithmetic: addition, subtraction, increment and decrement

Assignment operations

Pointer to pointer:
Both will point to the same address
Both must be of the same type

int data, *puntl, *punt2; /* Declarations */
puntl = &data; /* puntl initialization */

punt?2 = puntl; /* punt2 points to data*/

V1.1 © Autores

Operations with pointers (ll)

Arithmetic operations: Let arr be a pointer and n an integer
Addition, Subtraction, Increment/Decrement

arr+n,

arr-n, arr++,

arr—-

Pointer arithmetics just considers addresses
(pointer arithmetic != ordinary arithmetic)

arr[0]

arr[l]

arr[2]

1000 --—— arr

1008 -+—— arr + 2

arr IS int type (4 bytes)

V1.1

© Autores

arr[0]
arr[l]

arr[2]

arr[3]

arr[4]

arr[5]

arr

1000 --—————— arr

1002 -«——— arr + 1

1004 --+—— arr + 2

1006 --—— arr + 3

1008 --——— arr + 4

1002 --—— arr + 5

IS short int type (2 bytes)

from www.cs.umd.edu

Pointer types

Generic pointer does not point to any data type yet
vold *pointername;
It is declared generic and later can point to any kind of data
Null pointer points to address NULL (= 0)
datatype *pointername = NULL;

NULL IS a constant defined in stdio.h
It is used because address O is not valid

Constant pointer always points to the same address
datatype *const pointername;

The content of the address do may change though

V11 © Autores 10

Arrays and pointers ()

Every thing that can be done with arrays can also be
done with pointers
Pointer versions are generally faster and more used

The array identifier is a pointer to its first element

To access element M in an array of N elements, 0<M<N

With arrays

elementM = arrayname [M];
With pointer

elementM = * (arrayname+M) ;

Since the name of an array is a synonym of the location of
the initial element

V11 © Autores 11

Arrays and pointers (ll)

A pointer to an array of characters points to the first
element

It can be initialized in declaration
char *pointername = “string”;

pointername contains the address of the first character
string IS a string of characters ending with *\0’

Functions receive a string as a pointer to the first
element of the string (pass by reference)

char *message = “Reading error”;
puts (message) ;

V11 © Autores 12

Arrays and pointers (lII)

An array of pointers is declared as
datatype *arrayname[size];

Its elements are addresses where datatype elements
are contained
All elements must be initialized pointing them to a valid data

An array of pointers to character is similar to a array of
strings

V1.1 © Autores

13

Arrays and pointers (1V)

V1.1

Data in memory

Data 1
ARRAY OF POINTERS /
Pointer 1
Array nhame % bata 2
y Pointer 2 (:::i:::i;;7
Pointer 3 *ﬂ4>>Dma3
Pointer 4 Z::iiiiisiik
Pointer 5
\ Data 4

© Autores

Data 5

14

Arrays and pointers (V)

V1.1

Examples:
2D array of characters
char mssg[3][80] ={“Initial”, “Central”, “Last”};
puts (mssg[l]) ; /* “Initial” to screen */

Array of pointers to character

char *mssg [3]; /* Array of 3 pointers to char */

mssg[0]= “Initial”; /* Initialization*/
mssgl[l]= “Central”;
mssg[2]= “Last”;

(

puts (mssg[1l]);

© Autores 15

Pointer to pointer

A pointer to pointer is a double indirection:

datype **pointername;

pointername contains the address of *pointername whose
contains the address of **pointername

Particularly important in dynamical memory allocation of

multidimensional arrays (unit 4.10)
Element matrix[i] [j] of 2D-array can be accessed * (* (matriz+i)+7)

~_ﬁ___&%'

Puntero a
un puntero

CELDAS DE MEMORIA

| Array de |
| punteros = Arrays unidimensionales

ARRAY BIDIMENSIONAL CREADO MEDIANTE N
Vit ASIGNACION DINAMICA DE MEMORIA

Pointers to structures and unions

Pointer to structure/union declaration (unit 4.9)
struct structuretypename *pointername;
union uniontypename *polntername;

The types must be previously defined

To access one members using pointers

Usual notation: *polntername.membername

With «->» operator: pointername -> membername

V1.1 © Autores

17

