
© Autores
V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Pointers

Juan Ignacio Pérez

© Autores V1.1
2

Pointers in C language

 Definition

 Pointers operators: «*» and «&»

 Declaration and initialization

 Operations with pointers
 Assignment operations

 Pointer arithmetic

 Pointers types
 Generic

 Null

 Constant

 Arrays and pointers
 Pointer to array

 Arrays of pointers

 Pointer to pointer

 Pointers to structures and unions

© Autores V1.1
3

Pointer definition (I)

 A pointer is a variable that contains the memory address
of another variable

It is an indirection: the variable can be accessed indirectly

It is said that a pointer points to the variable

Example:

 Pointer a points to variable b

From wikibooks.org

© Autores V1.1
4

Pointer definition (II)

 Pointers are a very important tool in C language
They provide fast and efficient access to arrays

They facilitate working with linked lists

They facilitate information exchange between functions

They are essential to
Assign memory dynamically

Manage files

 Pointers must be used with a lot of care to avoid making
serious mistakes very difficult to find

© Autores V1.1
5

Pointers operators: «*» and «&»

 The address operator «&» returns the memory
address of its operand
 It can just be applied to variables and array elements

 punt = &var;

 The indirection operator «*» applied to a pointer
accesses the value of the variable the pointer points to
 It can be used as any other variable without limitations

 *punt = 7.98

 Both operators «*» and «&»
Are associated from left to right

Have higher precedence than arithmetic/logic operations

© Autores V1.1
6

Pointers declaration and initialization (I)

 The declaration of a pointer variable assigns the
necessary memory to store an address

 datatype *pointername;

 datatype is the type of the variable to which the pointer points

 pointername is the label of the memory position that stores
the variable address

 *pointername refers to the value of that variable

 The declaration does not reserve any memory for the variable

 The memory size required to store an address is
always the same, independently of the data type
contained in the address

© Autores V1.1
7

 To initialize a pointer is to make it point to a valid variable

 Variable must exist prior to pointer initialization

 This does not mean that the variable must contain valid data

float *punt; /* Pointer declaration */

float var; /* Variable declaration. They
 must be of the same type*/

punt = &var; /* Pointer initialization. var
 still without valid data*/

punt = 7.98; / Variable initialization
 Equivalent to var = 7.98; */

Pointers declaration and initialization (II)

© Autores V1.1
8

Operations with pointers (I)

 Just operations that can be made with addresses:
Assignment operations

Arithmetic: addition, subtraction, increment and decrement

 Assignment operations
Pointer to pointer:

Both will point to the same address

Both must be of the same type

int data, *punt1, *punt2; /* Declarations */

punt1 = &data; /* punt1 initialization */

punt2 = punt1; /* punt2 points to data*/

© Autores V1.1
9

Operations with pointers (II)

 Arithmetic operations: Let arr be a pointer and n an integer

Addition, Subtraction, Increment/Decrement

 arr+n, arr-n, arr++, arr--

Pointer arithmetics just considers addresses
(pointer arithmetic != ordinary arithmetic)

arr is int type (4 bytes) arr is short int type (2 bytes)

from www.cs.umd.edu

© Autores V1.1
10

Pointer types

 Generic pointer does not point to any data type yet

 void *pointername;

 It is declared generic and later can point to any kind of data

 Null pointer points to address NULL (= 0)

 datatype *pointername = NULL;

NULL is a constant defined in stdio.h

 It is used because address 0 is not valid

 Constant pointer always points to the same address

 datatype *const pointername;

The content of the address do may change though

© Autores V1.1
11

Arrays and pointers (I)

 Every thing that can be done with arrays can also be
done with pointers

Pointer versions are generally faster and more used

 The array identifier is a pointer to its first element

 To access element M in an array of N elements, 0≤M<N

With arrays

 elementM = arrayname[M];

With pointer

 elementM = *(arrayname+M);

Since the name of an array is a synonym of the location of
the initial element

© Autores V1.1
12

Arrays and pointers (II)

 A pointer to an array of characters points to the first
element
 It can be initialized in declaration

 char *pointername = “string”;

pointername contains the address of the first character

string is a string of characters ending with ‘\0’

 Functions receive a string as a pointer to the first
element of the string (pass by reference)

 char *message = “Reading error”;

 puts(message);

© Autores V1.1
13

Arrays and pointers (III)

 An array of pointers is declared as

 datatype *arrayname[size];

 Its elements are addresses where datatype elements
are contained

 All elements must be initialized pointing them to a valid data

An array of pointers to character is similar to a array of
strings

© Autores V1.1
14

Arrays and pointers (IV)

Pointer 1

Pointer 2

Pointer 3

Pointer 4

Pointer 5

ARRAY OF POINTERS

 Data 1

Data 2

Data 3

Data 4

Data 5

Array name

Data in memory

© Autores V1.1
15

Arrays and pointers (V)

 Examples:
2D array of characters

 char mssg[3][80] ={“Initial”, “Central”, “Last”};

 puts(mssg[1]); /* “Initial” to screen */

Array of pointers to character

 char *mssg [3]; /* Array of 3 pointers to char */

 mssg[0]= “Initial”; /* Initialization*/

 mssg[1]= “Central”;

 mssg[2]= “Last”;

 puts(mssg[1]);

© Autores V1.1
16

Pointer to pointer

 A pointer to pointer is a double indirection:
 datype **pointername;

 pointername contains the address of *pointername whose
contains the address of **pointername

 Particularly important in dynamical memory allocation of
multidimensional arrays (unit 4.10)

Element matrix[i][j] of 2D-array can be accessed *(*(matriz+i)+j)

© Autores V1.1
17

Pointers to structures and unions

Pointer to structure/union declaration (unit 4.9)

 struct structuretypename *pointername;

 union uniontypename *pointername;

The types must be previously defined

To access one members using pointers

Usual notation: *pointername.membername

With «->» operator: pointername -> membername

