Computer Science

Control flow


Juan Ignacio Pérez


Control Flow Statements in C language

Introduction
1f-else
switch
while
for
do-while
break
continue
return
goto

V1.1 © Autores



Introduction

V1.1

Control flow statements specify the order in which
computations are performed

Different types

Conditionals: Take a decision among two or more options
depending on the evaluation of a condition.
if else and switch

Loops: Iterations of operations (with condition evaluation)
for,while and do-while

Jump: They change unconditionally the order of execution.
continue, break, return and goto

Labels: Used to identify lines in a program.
case, default and «label :»

© Autores



if-else statement (I)

1f (expr) statl;
else stat2;
If expr Is true then statl IS processed
If expr Is false, stat2 Is processed
expr IS true if its value is different than cero

else stat2; Is optional

V1.1 © Autores



if-else statement (ll)

statl and stat2 can be blocks of sentences between brackets

1f (expr)
{

/* Block of sentences 1 */

}

else

{

/* Block of sentences 2 */

}

Different 1f-else blocks can be grouped with brackets

V1.1 © Autores 5



if-else statement (lll)

1f (exprl)
{
1f (expr2)
1f (expr3) stat3l;
else stat32;
}

else stat’;

stat31 Is processed if exprl, expr2 and expr3 are true

stat32 Is processed if exprl, expr2 are true and expr3
Is false

stat?2 Is processed if exprl Is false (without considering
expr2 and expr3)

V1.1 © Autores 6



if-else statement (IV)

Nested if-else statements
Brackets determine priority among if and else
Without brackets
Each else Is associated with the closest if
Each block of statements is processed independently

1f (exprl) statl;
else 1f (expr2) stat2;
else 1f (expr3) stat3;

else 1f (exprN) statN;
else statN+1;

statN Is processed just if exprN Is true

statN+1 is processed just if none of the previous statements
have been precessed

V1.1 © Autores



switch statement (I)

switch (expr)
{
case const-exprl:
/* Statement block 1 */
break;
case const-expr2:
/* Statement block 2 */
break;

case const-exprN:
/* Statement block N */
break;

default:
/* Statement block N+1 */
break;

V1.1 © Autores



switch statement (II)

switch Is a multi-way decision test whether an expression
matches a number of constant integers

Brackets are needed

case number is unlimited

default is optional

break causes an inmediate exit from the switch

expr IS evaluated and comparison with const-expr In
each case starts

If any matches, all statements are executed until a break or the
end of the switch

If none matches default statements are executed (if they exist)
until a break orthe end of the switch

V1.1 © Autores 9



int main

{

switch statement (lII)

#include <stdio.h>

V1.1

()
char grade = 'B';

switch (grade)
{

case 'A' :
printf ("Excellent!\n" );
break;
case 'B'
case 'C' :
printf ("Well done\n" );
break;
case 'D' :
printf ("You passed\n" );
break;
case 'F' :
printf ("Better try again\n" );
break;
default
printf ("Invalid grade\n" ); }
return 0O;

© Autores

10



while statement

while (expr) stat;

while (expr)

{
stat; /* block of statements */

If expr IS true, stat IS processed
After execution expr IS evaluated again
If false, exit from the while

WARNING: if expr doesn’t change its value, an infinite loop
can be created

V1.1 © Autores

11



for sStatement

for (init expr; cond expr; update expr) statement;

for (init expr; cond expr; update expr)
{
statement; /* Statement block */

init expr Is a expression that assign values to one or more
variables

cond expr evaluates an expresion: if true statement Is
precessed. If false loop is finished

update expr are statements that are processed after
statement. Typically update the value of the control variable

Example: for (i=0; i<n; i++) printf (“i= %47, 1i);

4

V1.1 © Autores



do-while sStatement

do statement;
while (expr);

do
{

statement ; /* Block of statements */
} while (expr):;

After executing statement, expr Iis evaluated, and, if true,
statement IS executed again.

If expr is false, exit from the loop.

WARING: If expr does not change its value within the loop, an
Infinite loop can be created.

V1.1 © Autores



break Statement

break allows to exit immediatly form the execution of
statement switch, while, do-while, for,

Independently of any other condition.

In nested loops, break exits just from the inner loop In
which is placed.

V1.1 © Autores

14



continue Statement

continue forces a new iteration in the loop, ignoring the
following statements until the end of the loop

With while and do-while, jJumps to condition evaluation
With for, jumps to update and condition

In nested loops, continue exits just applies to the inner loop
where is placed

V1.1 © Autores

15



return Statement

V1.1

return ends a function, returning control to the point of the
program where it was called

return expr

The value of expr will be returned to the program
It must be of the type declared in the function

Function end braket «}» is equivalent to return without
expr, and itis used with functions that does nor return any
value (equivalentto return 0)

© Autores 16



goto Statement

goto IS an unconditional jump

ABSOLUTELY NOT RECOMMENDED
label:
goto label;

«label:» Is aline identifier.
It can be in any part of the program

V1.1 © Autores

17



