
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Control flow

Juan Ignacio Pérez

© Autores V1.1 2

Control Flow Statements in C language

 Introduction
 if-else

 switch

 while

 for

 do-while

 break

 continue

 return

 goto

© Autores V1.1 3

Introduction

 Control flow statements specify the order in which
computations are performed

 Different types

Conditionals: Take a decision among two or more options
depending on the evaluation of a condition.
 if else and switch

Loops: Iterations of operations (with condition evaluation)
 for, while and do-while

 Jump: They change unconditionally the order of execution.
 continue, break, return and goto

Labels: Used to identify lines in a program.
 case, default and «label:»

© Autores V1.1 4

if-else statement (I)

if (expr) stat1;

 else stat2;

 If expr is true then stat1 is processed

 If expr is false, stat2 is processed

expr is true if its value is different than cero

else stat2; is optional

© Autores V1.1 5

if-else statement (II)

 stat1 and stat2 can be blocks of sentences between brackets

if (expr)

{

 /* Block of sentences 1 */

}

else

{

 /* Block of sentences 2 */

}

 Different if-else blocks can be grouped with brackets

© Autores V1.1 6

if-else statement (III)

if (expr1)

{

 if (expr2)

 if (expr3) stat31;

 else stat32;

}

else stat2;

stat31 is processed if expr1, expr2 and expr3 are true

stat32 is processed if expr1, expr2 are true and expr3
is false

stat2 is processed if expr1 is false (without considering
expr2 and expr3)

© Autores V1.1 7

if-else statement (IV)

 Nested if-else statements

 Brackets determine priority among if and else

Without brackets

Each else is associated with the closest if

Each block of statements is processed independently

if (expr1) stat1;

else if (expr2) stat2;

else if (expr3) stat3;

...

else if (exprN) statN;

else statN+1;

 statN is processed just if exprN is true

 statN+1 is processed just if none of the previous statements
have been precessed

© Autores V1.1 8

switch statement (I)

switch (expr)

{

 case const-expr1:

 /* Statement block 1 */

 break;

 case const-expr2:

 /* Statement block 2 */

 break;

 ...

 case const-exprN:

 /* Statement block N */

 break;

 default:

 /* Statement block N+1 */

 break;

}

© Autores V1.1 9

switch statement (II)

 switch is a multi-way decision test whether an expression
matches a number of constant integers
 Brackets are needed

 case number is unlimited

 default is optional

 break causes an inmediate exit from the switch

 expr is evaluated and comparison with const-expr in
each case starts
 If any matches, all statements are executed until a break or the

end of the switch

 If none matches default statements are executed (if they exist)
until a break or the end of the switch

© Autores V1.1 10

switch statement (III)
#include <stdio.h>

int main ()

{

 char grade = 'B';

 switch(grade)

 {

 case 'A' :

 printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

 printf("Well done\n");

 break;

 case 'D' :

 printf("You passed\n");

 break;

 case 'F' :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n"); }

 return 0;

}

© Autores V1.1 11

while statement

while (expr) stat;

while (expr)

{

 stat; /* block of statements */

}

 If expr is true, stat is processed

 After execution expr is evaluated again

 If false, exit from the while

WARNING: if expr doesn’t change its value, an infinite loop
can be created

© Autores V1.1 12

for statement

for (init_expr; cond_expr; update_expr) statement;

for (init_expr; cond_expr; update_expr)

{

 statement; /* Statement block */

}

 init_expr is a expression that assign values to one or more
variables

 cond_expr evaluates an expresion: if true statement is
precessed. If false loop is finished

 update_expr are statements that are processed after
statement. Typically update the value of the control variable

Example: for (i=0; i<n; i++) printf(“i= %d”, i);

© Autores V1.1 13

do-while statement

do statement;

while (expr);

do

{

 statement ; /* Block of statements */

} while (expr);

 After executing statement, expr is evaluated, and, if true,
statement is executed again.

 If expr is false, exit from the loop.

WARING: If expr does not change its value within the loop, an
infinite loop can be created.

© Autores V1.1 14

break statement

 break allows to exit immediatly form the execution of
statement switch, while, do-while, for,
independently of any other condition.

 In nested loops, break exits just from the inner loop in
which is placed.

© Autores V1.1 15

continue statement

 continue forces a new iteration in the loop, ignoring the
following statements until the end of the loop

With while and do-while, jumps to condition evaluation

With for, jumps to update and condition

 In nested loops, continue exits just applies to the inner loop
where is placed

© Autores V1.1 16

return statement

 return ends a function, returning control to the point of the
program where it was called

 return expr

The value of expr will be returned to the program

 It must be of the type declared in the function

 Function end braket «}» is equivalent to return without
expr, and it is used with functions that does nor return any
value (equivalent to return 0)

© Autores V1.1 17

goto statement

 goto is an unconditional jump

 ABSOLUTELY NOT RECOMMENDED

 ...

 label:

 ...

 goto label;

 ...

 «label:» is a line identifier.

 It can be in any part of the program

