

In-depth analysis of x86 instruction set
condition codes influence on superscalar

execution

Technical Report TR-UAH-AUT-GAP-2006-23-en

Virginia Escuder, Raúl Durán, Rafael Rico

Department of Computer Engineering, Universidad de Alcalá, Spain

March 2006

Versión en español:

Estudio detallado del impacto de los códigos de condición del repertorio x86 sobre la
ejecución superescalar

Informe técnico TR-UAH-AUT-GAP-2006-23-es

Virginia Escuder, Raúl Durán, Rafael Rico
Departamento de Automática, Universidad de Alcalá, España

Abstract:

Instruction set design is a crucial aspect of computer architecture. The requirements to fulfill have evolved
along time. For superscalar processing the most important feature is to avoid code coupling caused by data
dependencies. However, instruction sets may have particular characteristics that produce a negative impact into
the amount of available parallelism for which it is important to analyze them.

The popular x86 instruction set architecture includes some of those characteristics that may have negative
effects in superscalar processing that may influence the final performance: dedicated use of registers, implicit
operands, complex effective address computation mechanisms, condition codes usage, etc. It is therefore, an
ideal candidate to use for evaluation purposes. Specifically, we analyze the impact produced by condition codes.

In this work we take two approaches to solve the problem. On the first one we perform a statistical analysis
of the utilization of instructions and operands. On the second we perform a mathematical analysis based on
graph theory that provides a quantification for the contribution due to condition codes to the overall coupling
according to the different dependence types.

Finally, we evaluate the influence of condition codes utilization into the microperation level, proposing
some solutions to achieve an improvement in performance.

Key words: instruction set architecture, instruction level parallelism, instruction trace, operands use, instructions
use, graph theory.

Virginia Escuder, Raúl Durán, Rafael Rico

2

 Technical Report TR-UAH-AUT-GAP-2006-23-en

 3

1. Introduction

Instruction set design has always been a
fundamental issue in computer science. In the popular
text from Hennessy and Patterson [12], the reader may
find an historical review of this subject that
emphasizes this fact. Lately, commercial
developments as EPIC [21] and some experimental
projects such as “EDGE Instruction Set” [7] show that
there is still a considerable interest in the matter.

Design criteria for building instruction sets has
evolve in time: memory protection support, addressing
modes closer to that of high-level languages, code size
compactness, simplification of the architecture,
conditional execution, etc.; some theoretical studies
[6, 16] have had outcomes resulting on many other
requirements as well.

However, evaluation of instruction sets
architecture has not been explored as much as it could
be expected, given the importance of the subject.
Lunde's article [15] about the “Empirical Evaluation
of Some Features of Instruction Set Processor
Architectures” back in 1977 introduces an evaluation
of the influence of instruction set's architectural
aspects such the number of registers in machine
performance In our opinion, this is paradigmatic and
although the article was written long ago, we intend to
rescue the idea behind it and propose the analysis of
instruction sets architectures emphasizing that it has a
definitive influence in the final performance.

In-depth analysis of the impact that instruction
sets on their own have on performance has been
abandoned in favor of considering a single unit for
study: the instructions set and the hardware that
should interpret it, under the assumption that this is a
sounder computational approach. Another
circumstance that has also contributed to the lack of
research in this type of analysis is the extensive use
(sometimes abuse) of simulation as the performance
evaluation method. Simulation does not differentiate
between the effects produced by the language itself
and the physical resources used for the measure [27].

In this work, we outline the importance of
analyzing instruction sets solely, without the
contribution from any other factor that may also have
an influence in the overall performance. We believe
that a separate, theoretical evaluation of Instruction
Set's Architectures is necessary and can benefit the
design of compilers as well as the design of the
physical layer of computers, in addition to maybe
provide an additional criteria for its taxonomy.

Nowadays, one of the most important objectives
in processor design is code decoupling, that is, avoid
data dependency among instructions in order to obtain
maximum concurrency in superscalar processing of
code. Performance in the field of superscalar
execution depends on many factors: the algorithm's
intrinsic parallelism, the capabilities of the high level
language used, the compilation process and the target
machine's instruction set. It is therefore important to
unlink the study from the physical layer and focus into
the machine language layer by itself. Particularly, the
instruction set layer can be responsible for an over-
ordering of the code that has no solution in the

physical layer or that may cause increased execution
complexity and power consumption. Instruction sets
have limitations such as dedicated use of some
registers, implicit operands utilization, complex
address computation, condition codes utilization, etc.,
that may introduce negative effects into the amount of
available parallelism.

These are the factors we pretend to analyze and
measure in order to state what are the desired features
of Instruction sets for optimal superscalar execution,
how and why an instruction sequence gets tangled in
data dependences, etc. However, most research in
instruction sets evaluation is limited to the analysis of
instruction utilization like [8] in VAX or [1] in x86.
Only a few evaluate data distribution [13].

2. The x86 instruction set

The x86 Instruction Set Architecture (ISA) was
designed to fulfill basically two objectives: to
decrease the semantic gap between the high level and
the machine languages and to obtain a compact
executable code. These criteria are now obsolete but
the instruction set has been maintained for binary
compatibility reasons. Nevertheless, it behaves
inefficiently in superscalar implementations. The x86
ISA shows many features that may compromise the
actual concurrency of the original computational task
like dedicated use of registers, condition code
dependent branching and effective address computation
where up to three registers may be involved. The
sources of potential code coupling have been identified
out of the distribution of data use in programs [20].

These negative features may cause data
dependences not present in the original computation,
resulting on an over-ordering of instructions which is
produced before it is submitted to execution.
Consequently, instructions are rendered to the
physical layer under more restrictive conditions for
parallel execution than could be expected from the
original computation task and so we think it is a
penalty imposed by the machine language layer.

The x86 ISA performs poorly in superscalar
environments compared to non-x86 sets for different
architectural proposals. The IPC (Instructions Per
Cycle) is 0.5 to 3.5 in different x86 execution models
[17, 23]; compared to an IPC of 2.5 to 15 (and peaks
of 30) of non-x86 processors [24, 25, 26]. That makes
us think that the architecture of the instruction set is a
limiting factor on its own for the available parallelism
at the instruction level layer.

As the x86 ISA includes the features limiting
parallelism mentioned above and because of its spread
usage (it has been maintained across time thanks to
binary compatibility) we think it is a good candidate
to apply the analytical methods we propose. Among
the most interesting aspects to consider we have the
impact produced by the use of condition codes and the
impact produced by the computation of effective
addresses on the amount of available instruction level
parallelism.

Condition codes dependences is one of the
factors generating code coupling and it has been

Virginia Escuder, Raúl Durán, Rafael Rico

4

recently estimated [20] that it is responsible for close
to 13% of parallelism loss. The estimation is made by
completely eliminating the influence from condition
codes in a testbench, so it serves as a reference for an
ideal upper limit in the speed-up that could be reached
in case that the use of condition codes could be
completely avoided in the code. This is the start point
of a more extensive analysis that should also reveal
what type of data dependences are produced in
instructions, what programming features tend to
increase this influence, or how much coupling needs
the actual computation task. And consequently, what
are the possible alternatives to improve superscalar
performance.

3. Condition codes in instruction set's

architectures

Using condition codes is an alternative for
implementing conditional control flow. The evaluation
of the branch condition is performed using one or
more condition-code bits. These bits are grouped, for
practical reasons, into a status register where they get
updated upon the execution of processing instructions;
setting or unsetting each individual bit, the collection
completely describes the result. A processing
instruction typically precedes a conditional branch and
therefore it creates a dependence which requires serial
execution. Architectures using this schema are called
status register architectures; the x86 is one of them.
Considering superscalar execution, condition codes
increment the ordering of instructions as they pass
information from one instruction to the next.

Theoretically, there are other two alternatives for
implementing conditional control flow: evaluation of
the contents of a register named in the branch
instruction against a criteria also contained in the
branch instruction, and atomization of the comparison
and branching actions into a single instruction. The
first alternative, commercially adopted in the Alpha
and MIPS architectures for instance, is simple and also
optimal for superscalar execution while the second
one, used in the PA-RISC and VAX processors, makes
the pipeline design more complex as it results from
the union of two operations in one.

Advantages and drawbacks of the three
approaches are clearly exposed in the classical book
from Hennessy and Patterson [12].

 0: r1 op_a r2 � r3
 1: r4 op_b mem1
 2: r5 op_c r6 � r7 (� status)
 3: if status == cc go to

1

3

2
dependence

through condition
codes 0

Fig. 1. Condition codes impact on parallelism in a typical basic
block.

To better understand the condition codes impact
in parallelism we focus the analysis in the basic block
structure. Figure 1 is an example where a basic block
is shown together with its corresponding condition
code's data dependence graph, that is, the graph

depicting the contribution from condition codes in the
dependence relation. Instruction 2 generates a true
dependence with instruction 3, (a Read After Write
dependence). True dependences have computational
meaning and require serial execution: the block needs
2 computing steps to execute in a superscalar
environment. This example shows how using
condition codes intrinsically decreases the parallelism
in a basic block.

Let's now analyze Fig. 2 where we have another
very similar instructions basic block where there are
two processing instructions instead of only one. Both
of them write into the status register, so the data
dependence graph describes that three computing
steps are necessary to process the block thus revealing
a lesser degree of available parallelism in the block.
Comparing with Fig. 1, the true dependence remains,
however, the new data dependence is an output
dependence (Write After Write) and it is due to the
limitation of resources for writing: both instructions
need a single physical resource to write information.
The typical solution to the problem in a superscalar
environment is to use register renaming techniques
implemented in hardware, which eliminates the
imposed serialization. It is important to note that this
dependence is imposed by the architecture of the
instruction set and it is not a real (computational)
dependence.

 0: r1 op_a r2 � r3 (� status)
 1: r4 op_b mem1
 2: r5 op_c r6 � r7 (� status)
 3: if status == cc go to

1

3

2
true dependence
through condition

codes

output
dependence

through condition
codes

0

Fig. 2. Condition codes impact on parallelism in a typical basic
block with two status writes.

The PowerPC is another status register
architecture but, in contrast to the x86, its instruction
set was designed to avoid the negative effect produced
by Output dependences due to condition codes: data
processing instructions format include a bit used to
indicate whether the condition bits must be updated or
not. This effectively limits the coupling produced by
condition codes to the cases where it really has
computational meaning, and the compiler is in charge
of driving the decision. Figure 3 shows the result of
the usage of this mechanism. Now the graph only
shows a true dependence arc, similar to the initial
basic block example and so the block may be
processed into less number of computing steps than it
is in Fig. 2.

 0: r1 op_a r2 � r3 ()
 1: r4 op_b mem1
 2: r5 op_c r6 � r7 (� status)
 3: if status == cc go to

1

3

2
dependence

through condition
codes

0

Fig. 3. Condition codes impact on parallelism in a typical basic
block with two processing operations but just a solely status write.

Technical Report TR-UAH-AUT-GAP-2006-23-en

 5

The x86 ISA has not solved the output
dependences problem because it needs to keep
backward binary compatibility. Consequently, it
generates data dependences with no computational
meaning causing negative effects when executing in
superscalar environments, complicates compiling
processing and demand an execution-time solution in
hardware that would imply additional cost, power
consumption, and IC area.

4. Condition codes in the ISAx86

Condition codes are used for conditional
branching and they are located into the status register.
This register hosts bits with different meaning that can
be classified into one of the following two groups:
� control flags
� status flags.

Control flags include miscellaneous information
related to the operation modes of the processor,
including step mode execution, interrupt masking
information, use of auto-increment memory pointers,
etc. These control flags do not contain computational
information and therefore are not taken into account in
our analysis. Status flags qualify the result of
processing operations. A single or a combination of
status flags correspond to what we generally refer to
as a condition code. Status register thus has this dual
consideration being a unique storage location while
each bit has its own independent meaning and
management procedure.

Condition codes are typically used for
conditional branching in status register architectures
but in the case of the x86 ISA status flags can also be
used as input operands for some operations like
rotation through the carry flag, BCD adjusting
operations, or extension of operand's sizes longer than
a word. In these particular cases, where information
flows from one operation to the next, it exists a true
dependence holding computational meaning and the
instructions involved cannot be executed
independently thus causing a performance
degradation. It is necessary therefore to include these
cases into the analysis and evaluate its influence into
the general code coupling.

To start the analysis, we classify instructions into
five groups according to the type of manipulation they
perform on the status flags (O: overflow, S: sign, Z:
zero, A: Auxiliary Carry, P: parity, C: Carry) of the
status register.

Group I
 Read Write
Transfer O S Z A P C O S Z A P C
LAHF X X X X X
POPF X X X X X X
PUSHF X X X X X X
SAHF X X X X X
INT X X X X X X
IRET X X X X X X

Table 1. Transfer instructions accessing condition codes.

Group I:

Table 1 shows the first group of instructions
accessing condition codes. These are data movement
instructions whose purpose is to copy condition codes

into the accumulator or to the top of the stack and
viceversa. We include software interrupt routine calls
and returns too because these instructions save and
restore the status register onto/from the stack.

Group II:

The second group is made up of processing
instructions using condition codes as an extra input
operand to perform some data transformation. Table 2
shows these instructions specifying if the access is for
reading, writing or both and further classifies the
instructions into three classes:
� Adjust: used in BCD representation for adjustments

(in ASCII and decimal),
� Add/Sub for extended arithmetic that require double

word operands,
� Rotations through the carry flag.

The first two types of instructions are rather
infrequent: BCD representation is rarely used directly
and the word size of current general purpose machines
is large enough for the integer arithmetic of most
programs commonly used.

Group II
 Read Write
Adjust O S Z A P C O S Z A P C
AAA X X X
AAD X X X
AAM X X X
AAS X X X
DAA X X X X X X X X
DAS X X X X X X X
Add/Sub O S Z A P C O S Z A P C
ADC X X X X X X X
SBB X X X X X X X
Rotation O S Z A P C O S Z A P C
RCL X X X
RCR X X X

Table 2. Process instructions reading and writing condition codes.

Group III:

This is for processing instructions (arithmetic or
logical) accessing status flags exclusively for writing
in order to qualify the result of the operation
performed. They may generate true dependences
whenever a subsequent instruction reads the status
register and may also generate output dependences.
Table 3 lists opcodes mnemonics and the status flags
written by each operation.

Group III
 Read Write
Arithmetic O S Z A P C O S Z A P C
ADD X X X X X X
CMP X X X X X X
DEC X X X X X
DIV X X X X X X
IDIV X X X X X X
IMUL X X X X X X
INC X X X X X
MUL X X X X X X
NEG X X X X X X
SUB X X X X X X
Logic O S Z A P C O S Z A P C
AND X X X X X
OR X X X X X
ROL X X
ROR X X
SHL/SAL X X X X X X
SAR X X X X X X
SHR X X X X X X
TEST X X X X X X
XOR X X X X X

Table 3. Process Instructions accessing condition codes in write-
only mode.

Virginia Escuder, Raúl Durán, Rafael Rico

6

Group IV:
Conditional branch instructions are in this group.

They access status flags in read-only mode in order to
evaluate if the condition specified for the branch is
true or false. The evaluation may require to access
more than one status flag and combine them logically
with and-or relations. This group contains the
instructions that may create true dependences with
other instructions writing the flags.

Table 4 shows group IV instructions: its
mnemonics and the flags read in each case. Shadowed
cells are used to mean complementary conditions, that
is, those looking for a false (0) instead of a true (1)
value in the same flags. There are only 8 different
access patterns to status flags. As can be observed, the
auxiliary carry flag (A) is never used by these
instructions: its utilization is limited to instructions in
group II performing BCD representation adjustments.

Group IV
 Read Write
Branching O S Z A P C O S Z A P C
JB/JNAE X
JBE/JNA X X
JE/JZ X
JL/JNGE X X
JLE/JNG X X X
JNB/JAE X
JNBE/JA X X
JNE/JNZ X
JNL/JGE X X
JNLE/JG X X X
JNO X
JNP/JPO X
JNS X
JO X
JP/JPE X
JS X

Table 4. Conditional branch instructions.

Group V:
Table 5 presents the final group which is for

special instructions implementing loops, prefix
instructions, string handling, conditional carry
interrupt and carry flag handling instructions.

Group V
 Read Write
Conditional loop O S Z A P C O S Z A P C
LOOPNZ/LOOPNE X
LOOPZ/LOOPE X
Prefix O S Z A P C O S Z A P C
REPZ/REPE X
REPNZ/REPNE X
String O S Z A P C O S Z A P C
CMPS X X X X X X
SCAS X X X X X X
Interrupt O S Z A P C O S Z A P C
INTO X
Carry flag O S Z A P C O S Z A P C
CLC X
CMC X X
STC X

Table 5. Other instructions accessing condition codes.

In all cases, the access to condition codes is done
implicitly, that is, the condition is not part of the
instruction codification and depends exclusively on
the opcode; it can not be avoided by the programmer
and there is no mechanism to disable the access when
it is not meant to have computational meaning.

JCXZ, LOOP and REP are special instructions
because the branch decision does not depend on the
status flags but on the contents of register CX and the
condition evaluation checking occurs within the
execution phase of the instruction.

5. Experimental framework

We propose a dual, complementary
approximation to analyze the impact caused by
condition codes on superscalar execution. First we
perform a statistical study to determine the usage of
instructions accessing condition codes, and second, we
apply an analytical method based on graph theory to
obtain code coupling quantification. Both approaches
have a common input data set: the execution trace of a
set of programs used as testbench for the experiment.

a. Statistical approach

The statistical analysis is based on instruction
counts to obtain the frequency of appearance of
instructions accessing condition codes using their access
patterns to status flags shown in the previous section.

As the first use of condition codes is for
evaluation of condition for branches, it seems
convenient to use the basic block as a natural bound to
quote the sequences code. Then, as a second result, we
explain the behavior of programs within the basic
block from the condition codes perspective.

b. Analytical approach

The following process intends to obtain a more
precise quantification applying graph theory as
explained in [11]. Choosing a matrix representation,
we represent code sequences and their relations as
data dependences and then apply mathematical
relations lo gather conclusions. It is a specific
formalization to instruction level parallelism where we
define restrictions and properties and gather particular
operations and transformations. Details about these
operations and what they mean can be found in [10].

One of the most powerful tools derived from the
use of this method is the possibility of composing a
matrix representing the total dependence relation from a
set of different contributing matrices which correspond
to the different sources of data dependence. So, it is
possible to isolate and estimate the impact produced by
different data types on the whole set and also perform
several interesting combinations and obtain its specific
contributions to the total.

c. Testbench

To continue with the study made in [20] we use
the same testbench. At that time, some measures for the
impact of condition codes into the potentially available
parallelism were obtained. In the present work, we
reinforce the result obtained as well as perform further
analysis and reach to more elaborate conclusions.

The testbench is a set of DOS utility programs
(comp, find and debug) compiled in real mode as well
as some popular common applications like file
compressor rar (v.1.52) and the tcc C-language
compiler (v. 1.0). Program go from the SPECint95
suite has also been included using two different
compilation options: one optimizes for size and the
other optimizes for speed. Details about this testbench
can be found in [18].

The programs were run in step by step mode and
under a specific workload conditions to avoid

Technical Report TR-UAH-AUT-GAP-2006-23-en

 7

excessively long traces. Nevertheless, more than 190
million instructions were executed.

As we work with traces, the sequence of
instructions corresponds to the actual execution
sequence, and all the branch instructions are followed
by the instruction effectively executed after the
branch. Other experimental setups not based on traces,
have to predict the branching in order to select
instructions that should make up a sequence for a
certain analysis. In contrast, we may choose code
sequences of any length and these will always
correspond to perfect branch predictions.

6. Statistical results
a. Distributions of instructions

There are some studies about the instructions
frequently found in programs like the ones we use in
our test suite. The distributions found in these studies,
especially in [1, 13] are similar to the results of the
detailed analysis utilization (presented in [19]) that we
performed in our testbench. In the present case study
we are only interested on the instructions accessing
condition codes.

Fig. 4. Distribution of instructions using condition codes. The dark gray group bars are instruction writing condition codes. The light gray group bars
are instruction reading condition codes for the purpose of branch condition evaluation. Black bars are for instructions using flags as operands.

 Technical Report TR-UAH-AUT-GAP-2006-23-en

 8

The goal is to determine how coupling is
produced among instructions because of their
dependences to condition codes. We must then
classify instructions in the traces according to the
groups defined in Section 4 that they belong stating
the type of access to the flags (read or write) and
purpose. This is shown in Fig. 4 where it can be
observed that only instructions for group III and IV
appear significantly; group II appears occasionally and
only in two of the programs of the test suite.

All traces then, contain two significant groups:
group III which corresponds to instructions accessing
flags in write-only mode in order to qualify the results
of an operation, and group IV corresponding to
conditional branch instructions whose purpose is
reading the flags to evaluate a condition to branch

upon. Consequently, we can state that, as mentioned
in Section 3, the real usage given to condition codes
by programs is passing information to a subsequent
conditional branch instruction. Under these
circumstances, it becomes specially relevant the
partition of programs into sequences of instructions
that make basic blocks, in other words, branch
instructions can be used as boundaries to partition
programs and observe coupling patterns.

The instructions from Group II appearing in the
traces from rar-decompressing (SBB) and debug
(DAA) read a particular flag (carry C and auxiliary
carry A) and, consequently create true dependences
with previous instructions writing into condition
codes.

Fig. 5. Per instruction contribution to reading and writing condition codes.

Now, if we concentrate on conditional branching,
Fig. 5 shows the total count of instructions in the
traces writing each condition flag as well as the total
count of each different conditional branch instruction
reading these flags (O, S, Z, A, P and C). It can be

observed that there are many more writes than reads
and so, more condition codes are affected than really
needed for the branch decisions used. The difference
between the number of reads and the number of writes
for the same flag is large in all the programs except

Technical Report TR-UAH-AUT-GAP-2006-23-en

 9

for rar compressing and debug where it shows a
difference of less than 50% for the Z (zero) flag.

In general, writes affect all flags with few
exceptions like carry (C) and auxiliary carry (A). In
contrast, the status flags simultaneously evaluated
(read) for branch decisions range from one to at most
three, being the Z (zero) flag and the C (carry) flags
the most frequently used.

b. Coupling in the basic block

A basic block is defined [2, 3, 4, 12] as a
sequence of linear instructions without any branches.
This structure is frequently used in compiler theory as
it is a basic unit to apply local optimizations to. The
structure is also advantageous for analyzing the
impact produced by condition codes to the potential
parallelism of a program code as it is a good scenario
to identify and understand different data coupling
patterns. As we are interested in the coupling
produced by condition codes access only, we shall
identify how these accesses impose an order of
precedence in the execution of the block.

Table 6 shows the average size (in number of
instructions) of the basic block found for each
testbench program. It also shows the average number
of processing instructions in the block. It is not
possible to statistically define the mix of instructions
composing the basic block in each trace except for the
program comp where we can practically assume with
100% certainty that instructions COMP and INC are
always present in the mix of basic blocks from the
trace. This is consistent with the purpose of the
program too.

Program Average
instructions per BB

Average processing
instructions per BB

Comp 6.00 1.94
Find 7.68 1.56
Go tamaño 10.31 3.14
Go velocidad 10.16 2.89
Rar comprimiendo 3.19 1.25
Rar descomprimiendo 12.56 5.52
Debug 3.92 1.35
Tcc 8.98 2.28
Table 6. Average block size and average processing instructions per

basic block for each program in the testbench.

Considering condition code data dependences
only, each basic block necessarily contains a true
dependence between the last instruction updating the
status flags before the conditional branch instruction
that reads it and the branch instruction itself. From a
statistical point of view, the number of true
dependences will increase with the number of basic
blocks present in the code. In other words, the smaller
the basic block, the higher the number of true
dependences in the trace. Therefore, according to
Table 6, programs rar-decompressing and debug
having the smallest basic block size show the highest
potential for parallelism due to the lack of coupling.
This idea is also confirmed by the results found in [20].

Another typical coupling in the basic block is due
to output dependences: the order imposed by
processing instructions performing successive writes
to the same resource, in this case, the status register.
The limitation on the amount of available parallelism

due to this type of dependence is a direct consequence
of the instruction set architecture and it has no
computational meaning at all. A good example is
found again in the trace for program comp where the
basic block uses instruction CMP before the branch
instruction to set the condition code to jump upon,
while instruction INC, always present in the block too,
is only used for updating an address pointer and is not
related to the jump condition; however INC has an
output dependence with instruction CMP as a side
effect.

Statistically, the average length of output
dependences chains grow with the number of
processing instructions in a basic block. Data in Table
6 states that the traces for rar-decompressing and go
show the blocks with higher number of processing
instructions, therefore these programs are good
candidates to exhibit high coupling caused by output
dependences. Large basic blocks also tend to contain
large number of processing instructions.

Finally, true dependences caused by instructions
writing into the status register followed by other
processing instruction consuming this data is
practically nonexistent, as we observed in Fig. 4 for
group II instructions.

In summary we can reasonably state the
following:
� Larger basic block sizes decrease the hazard of true

dependences caused by condition codes.
� Larger basic block sizes may increase the length of

output dependence chains caused by condition
codes.

7. Quantitative evaluation method based on

graph theory

The statistical analysis based on instruction
distributions provide a qualitative knowledge of the
impact caused by condition codes to superscalar
execution. In the current section we explain how we
provide a quantitative measure for such an impact
using an analytical method derived from graph theory.

Applying graph theory to evaluate instruction
sets architectures has several advantages:
� it provides a simple description of the problem
� it allows to predict behavior
� it simplifies the transmission of knowledge
� it separates the study of instruction set's characteristics

from the hardware that should interpret it.
It is interesting to outline that the method's

approach provides for the evaluation of performance
of each layer of the computational process in an
isolated manner, without being conditioned by the rest
of layers.. The most popular evaluation method tool
used today is simulation but simulators inherently mix
the behavior of the Instruction set with the behavior of
the physical layer. It is important to develop
methodology to support the principle of isolated
evaluation as suggested in [22].

To model fine grain parallelism with graphs, like
in other fields where they have been used
successfully, we need to define the representation
chosen, a set of applying restrictions and properties
for the particular case, and a set of parameters whose

Virginia Escuder, Raúl Durán, Rafael Rico

10

mathematical calculation correspond to a measure of
the amount of available parallelism.

In our approach, we model instruction sequences
that show data dependence as directed graphs and then
use the matrix representation of these graphs for data
processing. The matrix is called the dependence
matrix, noted as D. The detailed mathematical
development leading to the following summary of
parameters definitions can be found in [10, 11]:
• Dependence matrix D is defined as:



= otherwise. 0,

;on dependsn instructio if,1 jidij
 (1)

It is normally evaluated for a sequence of n
instructions in the code known as instructions
window.
• Coupling C measures the amount of data

dependences in an instructions window. It is
computed used matrix D and its value is bounded by
the following limits:

∑ ∑
−

=

−

=
= 1

0

1

0

n

i

n

k ikdC
 








≤≤

2
0

n
C

(2)

• The length of the critical path L measures the longest
dependence path found in the n instructions window.
The units we use are computing steps:

L = l computation steps if and only if Dl = 0 (3)

• Gp is the parallelism degree, a parameter derived
from L representing the amount of available
parallelism found in the window. The expression
and bounds for it are:

LnGp /= []nGp ,1∈ (4)

• One of the most powerful properties of the method is
the compositional nature of matrix D, which states
that this matrix corresponds to the resultant of the
contribution from different sources of dependence
which are, in turn, individual matrices representing
isolated sources of dependences. The expression for
the combination is:

D = Ds1 OR Ds2 OR … OR Dsn (5)

• As we defined L as the length of the critical path of
the full combination of all source dependences
resulting on D, then L cannot be any shorter than the
largest critical path Lsi found in any of the
component matrices:

{ }






≤≤ ∑

i
sisii

nLLL ,minmax (6)

This means that the resulting parallelism degree
for the full composition will never be higher than the
parallelism degree found in anyone of the components
representing the different types of dependence
sources.

a. Data dependence sources combinations

The complete space of contributing data
dependence sources selected depends on the objective

of the ongoing analysis. Then, computing the
compositions resulting from the inclusion or exclusion
of particular sources of data dependences, we obtain
figures for its relevance.

In our case, we are focusing on condition codes
as source of dependences, therefore, our space is
divided into two data types: condition codes and the
rest. So, we build matrices taking into account only
one of the contributions and matrices including both
contributions.

To quantify the contribution of this source of
dependence to the total we also need to distinguish
among the different types of dependences namely:
� True dependences: read after write
� Anti-dependences: write after read
� Output dependences: write after write

Anti-dependences and output dependences are
produced because of the utilization of the same
resource and can be eliminated if the resource is
changed to avoid coincidences, therefore these are
non-true dependences.

 dependence type data type
Id True Anti Output Condition

codes Others

a
� � � � �

b
� � � � ∅

1
c � � � ∅ �

 � � � ∅ ∅

a
� � ∅ � �

b
� � ∅ � ∅

4
c � � ∅ ∅ �

 � � ∅ ∅ ∅

a
� ∅ � � �

b
� ∅ � � ∅

3
c � ∅ � ∅ �

 � ∅ � ∅ ∅

a
� ∅ ∅ � �

b
� ∅ ∅ � ∅

5
c � ∅ ∅ ∅ �

 � ∅ ∅ ∅ ∅

a ∅ � � � �

b ∅ � � � ∅

2
c ∅ � � ∅ �

 ∅ � � ∅ ∅

a ∅ � ∅ � �

b ∅ � ∅ � ∅

6
c ∅ � ∅ ∅ �

 ∅ � ∅ ∅ ∅

a ∅ ∅ � � �

b ∅ ∅ � � ∅

7
c ∅ ∅ � ∅ �

 ∅ ∅ � ∅ ∅

 ∅ ∅ ∅ � �

 ∅ ∅ ∅ � ∅

 ∅ ∅ ∅ ∅ �

 ∅ ∅ ∅ ∅ ∅

Table 7. All possible combinations of data dependences and dependence
types obtained by inclusion/exclusion in the mix. The label is used to

identify the mix of contributions in the text for the analysis.

Table 7 lists all possible combinations of
compositions for the grouping proposed. As there are
5 possible contributions, we may select 32
combinations; symbols � and ∅ indicate participation
or exclusion in the contribution.

Technical Report TR-UAH-AUT-GAP-2006-23-en

 11

Some combinations don't make sense, for
instance: considering no contributions at all or not
considering at least one dependence type in a mix. In
fact, only 21 combinations (shown in colored rows)
out of the 32 are considered valid, and we can set
them into 7 classes according to the types of
dependences included in the mix. Then we have the
following classes:
1. contribution from all dependence types
2. contribution from all dependences but true

dependences (non-true dependences only)
3. contribution from all dependences but anti-

dependences
4. contribution from all dependences but output

dependences
5. contribution from true dependences only
6. contribution from anti-dependences only
7. contribution from output dependences only

Groups 3 and 4 are not useful as they combine
true dependences with one of the non-true types and it
has no relevant meaning. For each one of these five
remaining groups (1, 2, 5, 6 and 7) we may further
have three compositions according to the data types
being considered; these are:
a) contribution from all data types
b) contribution from condition codes only
c) contribution from non condition codes only

Composition ID Composition Mix
a All data
b CC only 1
c

ALL
Non CC

a All data
b CC only 5
c

TRUE
Non CC

a All data
b CC only 2
c

NON TRUE
Non CC

a All data
b CC only 6
c

ANTI-dependences
Non CC

a All data
b CC only 7
c

OUTPUT
Non CC

Table 8. Listing of each composition identifier and its components.

So for each group we have information about the
contribution from all data, from condition codes solely
and from data other than condition codes. For
example, as depicted in Table 8, the composition 1b
records all types of dependences produced by
condition codes only; composition 5a corresponds to
true dependences due to accesses to all data resources,
and 7c records output dependences found due to the
access to all data resources but to the status register.

Interpreting parameters upon different
compositions we can reach valuable information about
the effective impact of condition codes on real
programs. According to Equation 6, the critical path
length of a dependence source component is a low
limit for the coupling of the full composition.
Therefore we will choose the longest path length
among all possible partial components to be the lower
bound for the composition.

According to this, we take into account the
isolated contribution from condition codes to
obtaining the critical path length for this source (Lcc).
We consider this value as a provisional lower bound
for L, the critical path length of the composition; note
that the rest of dependences may produce a limit for
the composition that may be equal or higher than Lcc
but never less.

Then we find Lncc, the critical path length of the
rest of sources excluding condition codes, obtain a
quantification of the relevance of the excluded
contribution (condition codes). If Lncc, is lower than
Lcc, sufficiently, this means that there is room for
improvement in the full composition by eventually
minimizing condition codes contribution.

8. Quantifying the impact of condition codes

accesses

The method described in Section 7 for the
quantitative evaluation is performed automatically by a
application designed for this very purpose [27]. It allows
the analysis of variable size of instructions window.
Given a profile for the dependence contributions, it
builds the relevant dependence matrices and obtains the
parameter set presented in Section 7 for each component
and the total composition.

We selected static 512 instruction sequences
windows. Sliding windows, the typical mode used for
the physical layer of processors and simulators, is an
excessively heavy load for the computation and it adds
no additional precision compared to a scenario using
sufficiently large static windows. We tested window
sizes up to 2048 instructions and found practically no
changes in results obtained while computing time
substantially increased. On the other hand, relevant
literature also confirms that, for a large size of
instructions windows, the information obtained from
sliding and static windows is the same [26]. We can
also argue that there is a very significant difference of
magnitudes between the number of instructions in a
large window and the number of data locations
defined in the ISA, even considering memory as a
single resource, so the frontier effects caused by a
static window can be neglected.

a. Critical Path Length

Table 9 shows the length of the critical path for
the different compositions defined for all the programs
traces of the testbench.

Generally, the critical path length grows when
more data dependences sources contribute in the
composition used. It is the case for class “a”
(dependences caused by all data) from all groups show
the highest values. Nevertheless, it is interesting to
observe how subgroup b which records contribution
from condition codes solely, shows a very low value
(around 2 in almost all traces) in groups 5 and 6. These
groups correspond to true dependences and anti-
dependences. A critical path length of 2 means that
there are only two sets of instructions: one set produces
data consumed by the other set; and these instructions
are independent within their respective sets.

Virginia Escuder, Raúl Durán, Rafael Rico

12

Composition ID comp find go (t) go (v) rar (c) rar (d) debug tcc
a 398.70 321.90 306.98 311.72 419.67 405.71 390.39 336.11
b 257.53 150.36 197.00 199.22 341.78 240.05 312.34 170.231
c 337.30 304.35 273.23 274.56 238.99 324.11 247.66 289.81
a 248.32 229.91 94.30 85.14 132.12 177.16 132.41 151.87
b 2.01 1.98 2.00 2.00 2.00 2.28 2.81 2.285
c 247.51 229.83 92.88 83.65 131.40 175.96 124.35 147.76
a 233.41 271.40 215.56 220.97 247.30 320.78 258.55 237.68
b 172.48 116.59 146.13 147.63 214.59 204.98 192.59 119.092
c 177.85 261.52 161.10 161.86 212.68 230.88 238.80 211.57
a 148.86 212.85 110.81 112.82 137.22 189.31 137.25 175.41
b 2.01 1.98 2.00 2.00 2.49 10.02 4.11 3.526
c 148.65 212.04 108.48 109.91 136.04 183.69 132.72 174.17
a 178.34 230.24 175.53 176.87 230.57 235.39 248.43 182.82
b 172.29 116.43 146.03 147.53 214.26 204.87 192.28 118.987
c 147.62 228.36 136.96 139.04 197.98 135.48 234.92 164.16

Table 9. Critical Path Length in computing steps for a static 512 instructions window, for different compositions and for each program trace.

In the case of group 5b this corresponds to a read
after write (true) dependence within a basic block
where a processing instruction writes a condition code
that is read by the branch instruction following it. In
the case of group 6b we have a couple of instructions
where the first one reads a condition (to evaluate a
branch condition) and the next one writes it (a
processing instruction after the branch); this
corresponds to inter-block dependences crossing the
boundary between two consecutive basic blocks.

b. Degree of parallelism Gp

Applying Equation 4 to data in Table 9 we can
obtain the degree of parallelism Gp for each
composition of data dependence. Figure 6 shows Gp
for the contribution from all data dependence sources.
The conclusion is that being Gp in the range of 1.22 to
1.67, it is only possible to obtain a global parallelism
of about 50%. This result is in agreement with the
results obtained in other research work about the x86
ISA [5, 13, 14, 17, 20, 23], which is an important fact
to validate our methodology.

Gp (all dependence types)

1.28 1.31

1.59
1.67 1.64

1.22 1.26

1.52

1

1.5

2

comp debug find go (size) go
(speed)

rar (c) rar (d) tcc

Fig 6. Parallelism degree Gp for each trace in the testbench when all
data dependence type contributions are considered.

c. Impact analysis per dependence type

Figure 7 presents the impact of condition codes
on the length of the critical path by contrasting the
value of this parameter when they are included-in or
excluded-from the different compositions of
dependences sources. The impact can be observed in
detail for all dependence types and for some
compositions as well. The graphs are normalized, that
is: 100% corresponds to the value for the critical path
taking into account all data types contribution
(condition codes and the rest of sources) for the
particular dependence combination tracked.

Fig. 7. Contribution of cc/no cc on different data dependence types.

Technical Report TR-UAH-AUT-GAP-2006-23-en

 13

The first graph shows the compositions for all
types of dependences. In the case of rar-compressing
and debug the composition of condition codes has a
path length Lcc exceeding the value obtained for the
composition of the rest of sources Lncc. In these two
cases, the path length Lcc is a low bound limit to the
complete composition's critical path length L which
means that any improvement in the general
decoupling due to changes operating on rest of data
will be jeopardized by the dependences caused by
condition codes. These results are in agreement with
the results presented in [20] where the absence of
dependences caused by condition codes produces a
very important performance improvement for these
same programs.

The second graph shows that the impact caused
by condition codes in true dependences is neglectable
compared to the impact caused by other data types
contribution. Now, among all program traces of the
testbench, debug shows the longest critical path (2.81
computing steps as shown in Table 9) in the
composition for only condition codes into true
dependences. This agrees with the hypothesis
introduced in Section 6 about higher hazards of true
dependences (caused by condition codes) in smaller
basic blocks given that, according to Table 6, the basic
block size for debug is only 3.92 instructions. This
data also demonstrates that instructions from Group II

(processing operations using condition flags as input
operands) are used very rarely and have no influence
worth considering in the analysis for superscalar
execution.

The third graph illustrates the weight of condition
codes dependences over non true dependences, which
is equivalent to other data types' contribution. Only for
rar-decompressing code coupling in slightly higher.

Graphs 4 and 5 show that condition codes
contribute basically as output dependences and cause
practically no anti-dependences compared to other
sources. The most important contribution occurs for
the trace of program rar-decompressing. Apparently,
this reinforces the hypothesis introduced in section 6
stating that large basic blocks may increase the length
of output dependence chains due caused by condition
codes.

d. Impact analysis per data type

Figure 8 provides a view of the condition codes
source (solely) contribution to each dependence type
on all program traces. Figure 9 shows the same
information for the rest of dependence sources. In
both cases, data is normalized considering 100% as
the length of the critical path for all data dependence
sources and all types of dependences, that is, the
critical path length of the full composition.

Fig. 8. Isolated contribution of condition codes to the different compositions of dependence types for each program trace of the testbench.

Again in Fig. 8 we observe that, mainly,
condition codes produce output dependences and the
columns for true and anti-dependences are very low.
However, in general, the combination of these two
(true dependences and anti-dependences) with the
output dependences seem to enlarge the overall
dependence chains. It seems like the few existing true
and anti-dependences would link two or more output
dependence chains producing a new longer chain.

Another interesting observation results from the
fact that the resulting total dependences are much
larger for program traces rar-decompressing and
debug than it is for the rest of program traces. It seems
like, when output dependences are accounted together
with the other dependence types (true dependences

and anti-dependences), the combination produces very
different magnitudes of L. As both of these programs
exhibit a block size quite smaller compared to that of
the others programs from the testbench, there seems to
be a correlation between the size of the basic block
and this effect of irregular enlargements.

Figure 9 shows a more equilibrated contribution
among the different dependence types when condition
codes contribution is excluded. True dependences
have a similar weight compared to non-true
dependences being the later slightly higher for all
program traces except for comp. Composing both
dependence types (total dependences) increases the
length of the critical path, although in an rather
heterogeneous manner.

Virginia Escuder, Raúl Durán, Rafael Rico

14

Fig. 9. Contribution of non condition codes data types to the different compositions of dependence types for each program.

9. Microperation level impact

Processors of the x86 family use a 2-level
microarchitecture to improve performance. The top
level acts as an interface to the CISC instruction set,
translating instructions into RISC-type microperations
which are executed in the low level machine.
Decoding is performed in three different units: the
simple, the general and the sequencer units.
Instructions decoded by the sequencer unit are
executed serially, while instructions decoded by the
other two units are executed in a superscalar fashion.

Huang and Peng have analyzed the distribution of
the number of microperations a single CISC
instruction gets decomposed [13]. Results are
summarized in Table 10. Most instructions (67%) are
translated into only one microperation and from the
rest almost 90% get translated into two
microperations. The weighted average value is 1.41
microperations per CISC instruction. Other researches
present very similar figures: 1.26 in [14] and 1.35 in
[5].

Microperations per
instruction

1 67%
2 22%
3 7%
4 3%

more than de 5 <0.5%

Table 10. Distribution of number of microperations per CISC
instruction.

According to these numbers, we can conclude

that the transformation from CISC to RISC only
increases the number of nodes in the dependence
graph by a factor of 1.5, which means that the
structure of the graph is not substantially changed.

Moreover, data coupling must be preserved
across the transformation. The question is how does it
affect the of dependence chains? To answer this
question we need to analyze how a CISC instruction
gets decomposed into several RISC instructions.
Basically it depends on addressing modes. When a
CISC operand is in memory, automatically, it gets
translated into two operations: a RISC load/store
operation used to transfer the operand to/from

memory from/to the CPU registers and a RISC
processing instruction that gets the operands from the
CPU registers and performs the operation.
Consequently, dependence chains experiment an
enlargement that basically corresponds to the increase
of the number of nodes in the graph. Figure 10 shows
the potential transformations happening in the CISC
graph when a shadowed node may split into two
nodes. As the dependence relation it holds with the
following node should be maintained the division may
correspond to one of the pictures: (a) or (b). Case (b)
is for an “atomic” transformation, that is, from the
point of view of coupling the node has not forked and
this corresponds to the most frequent case.

CISC graph

RISC graphs

(a) (b)

Fig. 10. Possible CISC to RISC graph transformations.

The slight enlargement of dependence chains
experimented in the resulting RISC graph, combined
with same increase of the number of instructions at the
RISC level result in a practically null increase of the
parallelism at this level compared to that present in the
sequence of CISC code.

Parallelism available for execution in superscalar
mode is limited by three factors: the parallelism
available at the machine language level, the capacity
to extract parallelism of the hardware that should
interpret the machine language and the availability of
resources at the physical layer. Assuming that physical
resources are not a constraint and that the parallelism
at the CISC language level does not change much
after the transformation into RISC type code, we
should now analyze the capacity of the physical layer
to extract parallelism.

We refer to the capacity to extract parallelism as
the ability to find independent operations in an

Technical Report TR-UAH-AUT-GAP-2006-23-en

 15

instruction window. In the present case, these
operations are microperations. True dependences
caused by condition codes cannot be dissolved
(ignored/overlooked) and the execution pace should
follow the partial ordering imposed by the dependence
graph. Non-true dependences can disappear by using
register renaming techniques, and the time of
conversion from CISC to RISC is a good opportunity
to apply it. In the case of condition codes, non-true
dependences come basically as output (write after
write) dependences, as we showed in previous
sections. However, it must be taken into account that
the register to rename is a special register (status
register), and that these output dependences have no
computational meaning and are a direct consequence
of the architecture of the instruction set.

10. Solutions and its cost

We may present a few ideas to minimize the
impact caused by condition codes of the x86
instruction set and analyze its cost, advantages and
drawbacks. There are two types of solutions, one
center on the physical layer implementation options
and the other on possible extensions of the instruction
set. Neither proposal mean a substantial change of the
architecture of the instruction set: condition codes to
evaluate branches and processing instructions using
condition codes as operands are maintained. We rather
target at cases where non true dependencies are
produced.

About physical layer changes, we think that the
register renaming strategy is an adequate technique of
proven effectiveness and widely used. It would be
advantageous to count on a status register pool whose
size should match the instruction window size used to
accommodate independent instructions to issue. Every
new write into the status register would be performed
on a different temporary storage element.

The renaming technique is simple but not very
efficient in the case of condition codes because many
bits are written but only a few are read, as shown in
the distributions of condition codes usage analyzed in
previous sections. Additionally, using hardware to
increment parallelism is costly due to a considerable
increase of required silicon area and power
consumption. Unfortunately, all this overhead would
be focused to solve output dependences which carry
no computational meaning and these additional
resources would show a low utilization profile or may
be used most of the time without a real necessity. It
would be another example of incrementing processor
resources for supporting large out-of-order executions
without effective benefits [9].

About changes in the instruction set, the proposal
focuses on non-true dependences cases taking
advantage of the CISC to RISC translation process.
The CISC format should not change in order to
maintain backwards binary compatibility, but the
RISC kernel may be changed. If we establish a status
register conditional write mode and enable the RISC
layer to detect it, then it could be set to inhibit/enable
writes to the status register upon execution of

microperations. In this manner the RISC layer can be
set to write the status register only for the
microperation responsible to set the condition for a
subsequent branch, and it can be set to inhibit writes
for the execution of all other microoperations
eventhough the originating CISC instructions do
perform a write.

The decision to set and selectively inhibit the
writing mode could be performed by the compiler and
the strategy chosen may consist on the inclusion of a
number of NOP operations acting as escape sequence.
For example, three NOP instructions in the program
start may flag the RISC processing logic to set the
writing mode, and a single NOP instruction may cause
it to use the non-writing mode for the next instruction.

A processor implementing this function may
execute a program compiled for it taking advantage of
the superscalar execution and avoiding output
dependences caused by condition codes. The same
compiled program would also execute in a regular
processor (binary compatibility is maintained)
although it would exhibit some execution time penalty
due to the increment of instructions (NOPs).

To prevent an erroneous execution of programs
not compiled for the modified processor, in case the
program happens to have the write disabling sequence
(i.e. three NOPs at the beginning), the processor
should check that there is also an enabling sequence
(one NOP) right before the first status register read
(i.e. the first conditional branch).

11. Conclusion

In the x86 ISA, in addition to asses branch
decisions, condition codes may also be used as input
operands in some instructions, although this use is
very unusual as evidenced by the usage distribution
analysis done.

The distribution of flags accesses reveal that
there are more flags written than later read and that
each flag is written many more times than it is read.
This circumstance conditions the resulting type of data
dependence tyeing instructions.

The analysis made show a correlation between
the size of the basic block and dependence hazards.
Large basic block decrements the hazard of coupling
due to true dependences caused by condition codes,
although a larger block size may also produce
lengthening of output dependence chains due to
condition codes.

Quantifying the impact into instruction level
parallelism produced by condition codes using our
method produces the following results:
� Condition codes decrease the amount of available

parallelism generating output dependences basically.
These types of dependences can be avoided using
register renaming techniques, but because they have
no computational meaning and are only originated
due to the architecture of the x86 ISA, it makes this
hardware solution an absolute waste of resources.

� Data dependence sources other than condition codes
cause an enlargement of the dependence chains.
There is a correlation with the basic block size so

Virginia Escuder, Raúl Durán, Rafael Rico

16

that when it is short, the enlargement is found higher
due to the contribution of true dependences.

Transforming the stream of CISC instructions to
RISC instructions does not produce a substantial
modification on the impact caused by condition codes
into the instruction level, neither in the microperation
level.

Finally we propose a mechanism to avoid these
unnecessary dependences with no computational
meaning created by condition codes that would
increase superscalar performance improving the
parallelization of code execution. The proposal does
not affect binary compatibility, can be driven from the
machine language level and consist on enabling an
internal execution mode in the hardware that
implements conditional writing of the status register.
This approach, compared to other hardware solutions,
avoids incrementing the complexity of the physical
layer and consequently does not have a negative
impact on area and power consumption.

12. References

[1] T. L. Adams and R. E. Zimmerman, “An analysis of 8086

instruction set usage in MS DOS programs,” in Proceedings of
the Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pages: 152 –
160, April 1989.

[2] A. Aho, R. Sethi and J. Ullman. Compilers. Principles,
Techniques and Tools. Addison-Wesley, 1986.

[3] A. Aho and J. Ullman. Foundations of Computer Science.
Computer Science Press, 1992.

[4] A. Aho and J. Ullman. Principles of Compiler Design.
Addison-Wesley, 1977.

[5] D. Bhandarkar and J. Ding, “Performance characterization of the
Pentium Pro processor,” in Proceedings of the Third
International Symposium on High-Performance Computer
Architecture, pp. 288 –297, 1997.

[6] P. Bose. Instruction Set Design for Support of High-Level
Languages. Ph. D. Dissertation, University of Illinois at
Urbana-Champaign, 1983.

[7] D. Burger, S. W. Keckler et al. “Scaling to the End of Silicon
with EDGE Architectures,” IEEE Computer, vol. 37, 7, pages:
44 – 55, July 2004.

[8] D. Clark and H. Levy. “Measurement and analysis of instruction set
use in the VAX-11/780,” in Proceedings of the 9th Symposium on
Computer Architecture, pages: 9 – 17, April 1982.

[9] A. Cristal, J. F. Martínez, J. Ll., and Mateo Valero. A Case for
Resource-conscious Out-of-order Processors. Computer
Architecture Letters, IEEE Computer Society, Vol. 2, no. 2,
November 2003.
Also available as: Technical Report No. CSL-TR-2003-1034,
May 2003.

[10] R. Durán and R. Rico, “On Applying Graph Theory to ILP
Analysis,” Technical Note TN-UAH-AUT-GAP-2005-01, March
2005. Available at: http://atc2.aut.uah.es/~gap/

[11] R. Durán and R. Rico, “Quantification of ISA Impact on
Superscalar Processing,” in Proceeding of EUROCON2005,
pages: 701 – 704, November 2005.

[12] J. L. Hennessy and D. A. Patterson. Computer Architecture a
Quantitative Approach. 2nd edition. Morgan Kaufmann
Publishers, 1996.

[13] I. J. Huang and T. C. Peng, “Analysis of x86 Instruction Set
Usage for DOS/Windows Applications and Its Implication on
Superscalar Design,” IEICE Transactions on Information and
Systems, Vol.E85-D, No. 6, pages: 929 – 939, June 2002.

[14] I. J. Huang and P. H. Xie, “Application of Instruction
Analysis/Scheduling Techniques to Resource Allocation of
Superscalar Processors,” IEEE Transactions on VLSI Systems,
vol. 10, no. 1, pp. 44-54, February 2002.

[15] A. Lunde. “Empirical Evaluation of Some Features of
Instruction Set Processor Architectures,” Communications of
the ACM, vol. 20(3), pages: 143 – 153, March 1977.

[16]W. D. Maurer. “A theory of computer instructions,” Journal of
the ACM, 13(2), pages: 226 – 235, April 1966.

[17]O. Mutlu, J. Stark, Ch. Wilkerson and Y. N. Patt, “Runahead
Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors,” in Proceedings of the 9th
International Symposium on High-Performance Computer
Architecture (HPCA'03), pp. 129–140, 2003.

[18]R. Rico, “Proposal of test-bench for the x86 instruction set (16
bits subset),” Technical Report TR-UAH-AUT-GAP-2005-21,
November 2005. Available at: http://atc2.aut.uah.es/~gap/

[19]R. Rico, “Analysis of x86 Data Usage (16 bits subset),”
Technical Report TR-UAH-AUT-GAP-2005-22, November 2005.
Available at: http://atc2.aut.uah.es/~gap/

[20]R. Rico, J. I. Pérez, J. A. Frutos. “The impact of x86 instruction
set architecture on superscalar processing,” Journal of Systems
Architecture, vol. 51-1, pages: 63 – 77, January 2005.

[21]M. S. Schlansker and B. R. Rau. “EPIC: Explicitly Parallel
Instruction Computing,” IEEE Computer, pages 37-45,
February 2000.

[22]K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Hill
and V. S. Pai. “Challenges in Computer Architecture
Evaluation,” IEEE Computer, vol. 36, 8, August, 2003.

[23]J. Stark, M. D. Brown and Y. N. Patt. “On Pipelining Dynamic
Instruction Scheduling Logic,” in Proceedings of the 33rd
Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 57-66, 2000.

[24]D. Stefanovic and M. Martonosi, “Limits and Graph Structure
of Available Instruction-Level Parallelism,” in Proceedings of
the European Conference on Parallel Computing (Euro-Par
2000), 2000.

[25]K. B. Theobald, G. R. Gao and L. J. Hendren, “On the Limits
of Program Parallelism and its Smoothability,” in Proceedings
of the 25th Annual International Symposium on
Microarchitecture, pp. 10-19, 1992.

[26]D. W. Wall, “Limits of instruction-level parallelism,” in
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 176-188, April 1991.

[27]Software tool (source code, configuration files and
documentation): data dependence analyzer ADD; CVS repository
(anonymous user):
CVSROOOT:pserver:anoncvs@atc2.aut.uah.es:2401/home/cvsm
gr/repositorio

