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Abstract 
 

SPEC CPU benchmark suite has become the most frequently used suite for computer architecture 
research. The workload is designed to stress the hardware of the machines for the next generation. 
Consequently, the executed instruction count has been considerably increased in the SPEC CPU2006, 
compared to the previous suites. But this fact results in prohibitive experimentation time or resources 
requirements for research when using simulation techniques or working in embedded systems 
development. 

In the Literature has been described a wide range of approaches for reducing the workloads in 
experimental environments. In this work an extensive revision of them is offered. 

Moreover, a detailed analysis of the influence of input data sets in the workload of the CPUint2006 
suite is presented. As a result, a suggestion of alternative workload with 2 orders of magnitude dynamic 
executed instructions count lower than test workload is proposed and characterized. 

The aim of our work is to help researchers finding a representative set of workloads for the SPEC 
CPUint2006 programs to use in their experiments whenever they have to discard using the reference 
workload due to time or resource constraints. 
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1. SPEC benchmarks 
 

SPEC is the acronym for Standard Performance Evaluation Corporation, a non-profit organization 
whose purpose is to define and maintain a set of standard benchmarks for computer systems and make 
them available to the users of such systems as a common reference point in the evaluation of computer 
performance. It is participated by computer manufacturers, system integrators, consultants, publishers, 
universities and research organizations [50]. 

Since its foundation in 1988, the SPEC consortium has developed and distributed technically reliable 
benchmarks based on real applications. The selection of inputs and workload is performed by the 
consensus amongst consortium members willing for a transparent, comparable, reproducible and non-
proprietary solution, as the organization aim is “an ounce of honest data is worth a pound of marketing 
hype”. 

SPEC currently offers testbench for the evaluation of different aspects of computation such as 
performance of CPU, graphics, distributed Java computing, web servers, and network file systems. 
 

1.1. The SPEC CPU suite 
 

The present technical report belongs to the field of performance quantification for intensive-
computing. The testbench set from the SPEC organization that best fits this field is the SPEC CPU suite. 
The SPEC CPU suite aim is to be representative of programming style and application fields of real 
worldwide computer-intensive workload. 

The first delivered set in 1989 had 10 programs and it was known as SPECmark. The most recent 
generation of the set is from 2006 (SPEC CPU2006) and it is made of 29 programs classified into two 
groups: 12 programs for integer computation (SPEC CPUint2006) and 17 programs for floating point 
computation (SPEC CPUfp2006) [20]. A more complete historical perspective of computer-intensive 
tests can be found in Henning’s work [23]. 

SPEC CPU programs are well known real world applications written in high level, portable, 
language (C or C++) with slight code modifications in order to minimize input/output and thus let the 
processor, memory and compiler be the factors under evaluation. In fact, it is a requirement that 
input/output workload is less than 5% and the article from Ye, Ray and Kaeli show that the I/O activity of 
the SPEC CPU2006 is far less than this limit [58]. Another requirement is that memory consumption and 
execution time should be significant for each generation of computers with growing power and capacity. 
The organization keeps tight restrictions of evaluation rules affecting code, compilation flags and other 
aspect of execution environment of the test programs. 

The workload sets the amount of processing performed by each benchmark run. The tools distributed 
by SPEC allow the specification of three different sizes of input data producing different workloads: test, 
train and reference (“ref” for short). The reference size stands for the reference workload, that is, the input 
data and command-line options when applicable, used for actual measurements. The test input sets are 
only used to check that programs compile and execute correctly before launching a real run or to tune 
optimization options. Similarly, the train inputs are used for profile-based compiler optimizations, so the 
reference set is the only reportable set. 

The SPEC suite has a widespread usage by computer vendors, it is widely accepted by consumers 
and it is very commonly found too in the academic and research worlds although there is an outstanding 
debate about how to use it, its convenience and drawbacks, and whether is it or not necessary to design an 
alternative for research usage, etc. 

The goal of this present work is reduced to the integer benchmarks (SPEC CPUint2006). A 
thoroughly characterization of SPEC CPUint2006 can be found in the technical report “SPEC 
CPUint2006 characterization” [13]. 
 

1.2. Controversia in the academic world 
 

There is a live debate in the academic world lasting several years about whether the SPEC tests are 
adequate or not for research. As we said before, the workload has been design to contrast the hardware of 
the machines for the next following years. Consequently, the executed instructions count has considerably 
increased as well as the size of memory map used. Then, one of the problems stated is that they are far too 
large (in size and execution time) for experimentation and analysis. This has lead to some misuse by the 
research community in the attempt to cut down the size of experiments, according to some authors who 
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make an alert about the potential fragility of the results presented when conclusions are gathered in sub-
sets selected without adequate assessment. In the ISCA 2003 (International Symposium of Computer 
Architecture 2003), Citron, Patterson and Sohi with Hennessy as moderator develop this subject 
commenting on a study made in the context of papers presented at a conference [5]. There, 90% of the 
papers providing measures used the SPEC, but a subset of the benchmarks was used instead of the full set 
in about 70% of the cases. But then only 30% of these explained why, and it was mentioned that, in some 
cases the subset consists simply of the benchmarks that did compile. 

In summary, there is no agreement about the convenience of using the full set or just a subset of the 
SPEC CPU programs selected according to a researcher needs. Furthermore, some people think that 
binary code should be used instead of compiling source code or, like Sohi suggests, maybe there should 
be a test set designed for research purposes. Other alternative benchmarks programs have also been 
proposed recently [48]. 
 

1.2.1. Excessive workload 
 

A major issue to take into account is the size of the testbench. As the suite SPEC CPU2006 was 
launched to keep up with the current technological and application changes from nowadays society, the 
inputs fed to the benchmarks had to grow to produce longer execution times and higher memory intensity. 
Consequently, instruction traces are much larger in the SPEC CPU2006 than they were in SPEC 
CPU2000. 

The latest distribution of the suite executes more than 3 millions lines of source code which 
according to Phansalkar et al. [42] may correspond to a dynamic instruction count in the order of few 
trillions of instructions per program while in the SPEC CPU2000 they were in the order of few hundreds 
of billions. 

This considerably large code size proposed by the SPEC organization as tests follows the principle 
“more is better” explained by the facts exposed in Henning work [23]: 

- allow the testbench keep-up with the technological advances in computers1 intensifying both 
execution time and memory usage, 

- usage of real programs representing most commonly used application areas [20]; this is to 
avoid that a reduced selection may not be representative enough, 

- try to include several programming languages and techniques following technology trends such 
as object orientation [56]2, 

- pretend to force compilers developers to include optimizations for a wide range of programs, 
- given that the SPEC CPU are designed to quantify CPU intensive behavior, input/output is 

reduced but most previous3 and related code is preserved in order to keep code as much close 
to reality as possible, 

- the variety of applications makes it possible that two duplicated programs (from the facts under 
test point of view) in today machines may be different in tomorrow's machines, 

- a wide program base permits finding errors in hardware-software platforms or in development 
tools4. 

The considerably large workload inherently has some problems like heavy operability and a more 
complex maintenance. In addition, there are other disadvantages from the scientific point of view: 

- evaluation becomes a tedious process, 
- it is more probable to experiment difficulties at compilation time, 
- simulation time grow far too much if simulators should be precise, 
- evaluating embedded systems whose memory is necessarily limited in size becomes a difficult 

task because of the large memory map used by the tests, 
- there might be redundancy or duplicity of workloads. 

                                                 
1 “The quality and the runtime of benchmark data is one of the major problems with any benchmark. The runtime must be 
sufficiently large today to take account of future machine speed improvement. On the processors used during suite development, the 
runtime turns out to be about 20-30 minutes for reference data, 25% of the reference time for train data, and less than 2 minutes for 
test data” (taken from Wong's article [56]). “When processing is performed in an execution-driven simulator the time to complete 
the reference workload for the SPEC CPU 95 is several weeks and for the SPEC CPU2000 it is almost a year” (taken from Haskins 
and Skadron's [19] article). 
2 Using several programming languages and styles produce specific effects at code-level. So, for example, according to [21], 
floating point programs written in C++ produce a higher number of branches than programs written in C or FORTRAN. 
3 In the SPEC consortium there are reasonable doubts about whether input/output sequences should be reduced or not, that is, screen 
output may be avoided but, should the sequence to output an error message be totally excluded? 
4 Sometimes the SPEC programs don't work... because of an error never found before in the program. 
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In order to overcome these inconveniences, some techniques have been proposed to cut down work 
load size which will be analyzed thoroughly later on section 2. 
 

1.2.2. Redundancy 
 

Some authors state that the large size of the suite produces redundancy because input loads as well as 
applications may be quantifying similar facts. Redundancy increments evaluation costs, increases 
research and design times adding no extra information. 

McGhan ensures in his paper published in Microprocessor Report [37] that the SPEC CPU2006 
applications are redundant whereas, in contrast, some important application fields are not represented, 
like Electronic Design Automation (EDA). Other later publications applying statistical methods [42, 29] 
in fact conclude that there is redundancy and propose a truly representative subset [41]. These articles 
also state that the objection from McGhan about the lack of representation of the EDA sector in the suite 
is incorrect. 

However, redundancy is not exclusive from the SPEC CPU latest distribution set. It was also present 
in previous suites, as stated by Saavedra and Smith [44], and by Giladi and Ahituv [14] where the 
SPEC89 release is analyzed. Later studies propose what are the fundamental characteristics a testbench 
must fulfill and emphasize the redundancy in the SPEC CPU95 suite [8, 18, 52]. Gustafson and Snell 
design a testbench (HINT) which can predict the behavior of the SPEC CPU95 [17] using only 300 lines 
of code. Vandierendonck and De Bosschere conclude that the SPEC CPU2000 programs are redundant 
[54]. Luo et al. analyze different techniques for quantifying similarity of work loads and measure 
redundancy in a selection of the SPEC CPU2000 [35]. 

Finally, the conclusions from some works [42] mainly state that application areas representativeness 
may not be an issue and that some programs from one area may behave more similar to another from a 
different area depending on the input data set used. 
 

1.2.2.1. Quantification of similarity 
 

Quantifying similarity basically consists first on a phase for selecting the characteristics describing 
the test program and then on a phase for grouping (clustering) using some method to estimate the 
difference (distance measure, grouping algorithms, etc.). 

When selecting the set of characteristics to evaluate, these are normally classified as dependent or 
independent of the machine or microarchitecture. Independent characteristics are interesting to consider 
because they are characteristics inherent to a program and, therefore, they will permit to force always the 
same bottlenecks and hardware properties in different machines so providing for analyzing different 
behavior. 

Among program inherent characteristics it is common to have: 
- instruction mix 

o distribution of process, memory access and branch instructions; 
- control flow behavior 

o basic block size 
o branch effective address 
o percentage of taken branches 
o percentage of forward taken branches 

- instruction-level parallelism in source code 
o measured as the distance (in number of instructions) between data production (register 

write) and consumption (register read); 
- data locality; and 
- instructions locality. 

Some common microarchitecture dependent characteristics are cache miss-rate, branch prediction 
accuracy, sequential flow breaks, instruction mix and instruction level parallelism actually achieves in 
execution. 

Gathering information for these characteristics can be done in different ways: accessing hardware 
counters in real processors, instrumenting code or using simulators. 

It is well known that many characteristics depend on each other. In order to simplify the problem and 
avoid correlations than can influence results some researchers use techniques to extract a representative 
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sample of characteristics, such as PCA (Principal Component Analysis). This technique is explained in 
[26, 9, 36] and in [60] there is a formalization of its application to the methodology of simulation. 

Once the desired characteristics have been selected and reduced the next step is to measure the difference 
(or similarity) of each test program. This produces a grouping or clustering of similar test programs5. 

The measure of the difference can be done in different ways. Some works use distance measures 
(Euclidean, Manhattan, cosine, etc.), other use other specific definitions from a concrete problem (for 
example, in [16] they use coverage). In many work instances they use univariant statistical methods like 
chi-squared goodness-of-fit test [28] or multivariant statistical methods like Cluster Analysis [27, 45], 
among which we have the K-means clustering method, the hierarchical clustering method6 or the K-
medoids method. The chi-square is used, for instance by the authors of MinneSPEC, KleinOsowski y 
Lilja [31]; the K-means clustering method is applyed by Todi (for SPEClite) [53]; K-means and 
hierarchical clustering is used by Phansalkar et al. (for SPEC CPU2006 subsetting) [41, 42, 29], and K-
medoids clustering by Luo et al. [35]. 

There is no actual agreement upon the best method to measure distance or clustering. Luo et al. [35] 
justifies why not to use K-means. Todi argues that resulting clusters are strongly dependent on the 
method of CA as well as on the selected characteristics [53]. And, it is rather meaningful that the 
similarity quantification used in MinneSPEC [31] (based on the chi-square distance) generally agrees 
with Eeckhout et al. (based on multivariant PCA and CA7) [12] when selecting the function-level 
execution profiles characteristic but, in contrast it differs when using another set of characteristics. 

Then, we can conclude that the concept of similarity is not an universal one and that the criteria to be 
used for selecting inputs that may produce similar results to the reference set depends on the actual goal 
of the experiment. 
 

2. Workload reduction 
 

While large execution times are desirable for better results of performance measurements, it can be 
unaffordable for computer architects to perform precise evaluations. It is necessary to find lighter 
workloads that permits the experiments to be perform in reasonable times while still keeping the 
representativity of the benchmark. 

Execution-driven or trace-driven simulators are examples of experimental systems for research that 
require benchmarks that permit obtaining results in a contained time without compromising the precision 
of research. On the other hand embedded systems in which there are limitations of memory size, can't 
execute programs with high memory consumption as the programs from the suite SPEC do under typical 
workload conditions, therefore these systems also require a reduction of memory requirements of test 
workloads. 

In the relevant literature there is a wide range of alternatives oriented towards reduction of 
workloads. In the following sections we address the ones that appear in two works: the review from 
Haskins et al. [19] and Ringenberg's work [43]. 

The two most commonly used methods to reduce workload are the reduction of the suite and the 
sampling. Reducing the suite can be done either by reducing the input or by selecting a subset of 
programs. Sampling is performed in many different ways. 

In Haskins et al. [19] we find a comparison of both techniques, concluding that both can produce 
significant errors but they also decrement considerably the evaluation time. Input reduction is a very valid 
technique although it requires becoming very knowledgeable of the code of the programs to be precise. 
Sampling has the problem of having to start from an unrealistic situation form the hardware standpoint 
and that needs to be taken onto account. 

In addition to these two techniques other less extensively used are analytical modeling and statistical 
simulation. 
 

                                                 
5 In the work of Joshi et al. [29], in section “Related Work”, we dispose of a review about different ways of quantifying the 
difference that can be found in literature. 
6 “The K-means clustering algorithm divides a set of N programs into K groups, where K is a value specified by the user. Therefore, 
in order to evaluate different grouping possibilities one needs to cluster programs for different values of K and then select the best 
fit. Hierarchical clustering is useful in simultaneously looking at multiple clustering possibilities and the user can select the desired 
number of clusters using a dendrogram. Hierarchical clustering is a bottom up approach and starts with a matrix of distance between 
N cases or benchmarks. The distance is the Euclidean distance between the program characteristics” (taken from [42]). 
7 Some authors work with the so called phase techniques and they define phase as “a portion of dynamic execution of a program for 
which most of the performance metrics show very little variance”. When that technique is applied to sampling they call it “phase 
based representative sampling” [35]. 
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2.1. Reducing the suite 
 

The suite may be reduced by modification of the input data used or by selecting a subset of programs 
from the suite. The former technique allows reducing the number of processed instructions and 
consequently, execution time while it is also possible to reduce the memory map size used. The later 
technique reduces the executed code too discarding some of programs of the set. Both techniques can also 
be combined. 

A paradigmatic example of the first technique is the so called suite MinneSPEC which is a reduction 
of input data for the SPEC CPU2000 testbech set [31]. As an example of the second technique, 
Phansalkar et al. [41] propose subsetting the programs of the SPEC CPU2006 suite. 

It is a common practice to submit the reduced set to some kind of comparison with the original one 
in order to quantify similarities and discrepancies caused by the modified input and/or the programs used. 
 

2.1.1. Reducing input data sets 
 

Reducing input data is a traditional procedure to decrease the problem size to be processed by the 
test program and so reduce the evaluation time. Additionally it also allows reducing the memory map size 
used by the program. 

The idea is to use the same programs of the original suite and decrease the workload submitted by 
acting upon the arguments of the call or input files used. 

The great advantage of reducing the input is that programs execute completely including its 
initialization phase, computing phase and finish and cleaning phase [53, 19]8. That is, the program 
executing with a reduced input is valid by itself and there is a high probability that the program will show 
the same execution profile as it does with the original workload, investing similar proportional times in 
each phase. 

However, a “blind” input reduction is not adequate as it may change the behavior of the program if it 
happens to exercise a different hardware than the original case. 

Deviations in computational behavior upon input changes have been studied using the different input 
data sets provided by SPEC for their benchmarks. The goal of the train workload is to be representative of 
the reference workload requiring less execution time in order to obtain profiling information and thus 
tune compiler options accordingly. However, analysis performed by Gove and Spracklen show that there 
are non-neglectable differences between the train and reference workloads for concrete programs of the 
suite although the program flow is similar for both workloads [16]. 

Additionally, analysis made by Phansalkar et al. show that, occasionally, changing the arguments of 
a program produces changes in its computational profile rather resembling another program of the suite 
[42]9. 

In summary and in agreement with Haskins et al. [19], we must state that generating a reduced input 
that can reproduce the behavior of the original workload is not easy and requires a confident knowledge 
of the program code. This requirement produces open discrepancies in the scientific community. So, for 
instance, while it is absolutely essential for Sohi in order to perform a correct evaluation [5], for Todi it is 
an evident disadvantage [53]. On the other hand, the practice of using reduced input is inherently trustable 
in contrast to sampling and its potential error of initialization. 
 

2.1.1.1. MinneSPEC 
 

In 2002 a reduced workload was developed for the SPEC CPU2000 benchmarks: the MinneSPEC 
[31]. This workload design seeks equivalence of results compared to the reference workload still 
executing the same benchmark programs from start to finish, which is a simple and practical approach 
that can be applied. 

The authors proposed a workload set reduced by the application of the following methods: 
- command-line modification (avoiding or changing arguments) 
- acting upon the input file 

                                                 
8 The work of Haskins and Skadron states that it is a good practice to preserve all execution phases of a program [19]. 
9 “It is not surprising (and even, to some degree, intended) that different input files often cause the program to exercise different 
paths, and that the subroutine distribution may vary considerably between invocations.” This is stated by Weicker and Henning in an 
article where they analyze subroutine call profiles under the reference workload of the SPEC CPU2006 [55]. 
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o truncating the input file 
o sampling the input file 
o changing the contents of the input file 

- using the train or test workload instead of the reference workload 
- a combination of the above 

MinneSPEC provides 3 workload levels: large, medium or small and they are called lgred, mgred and 
sgred respectively. These reduced datasets are meant to be options to decide upon the length of the tests 
vs. the fidelity with the original sets for a given experiment a user may want to carry out. The goal was to 
obtain a range of dynamic instructions in the order of 100 million, 500 million and 1,000 million. 

The authors firmly state that it is very difficult to obtain proportional profiles of the reference load 
for some programs and even impossible for others. Nevertheless, they ensure that workload they propose 
is adequate for computer architecture analysis based upon the fact that the programs of the testbench 
remain the same, which is not a very strong argumentation. 
 

2.1.1.2. Validation of the MinneSPEC 
 

The first validation we deal with is from the authors of the suite MinneSPEC who claim that their 
workloads are representative of reference workloads. The authors quantified the differences perceived in 
terms of: 

- function-level execution profiles, 
- instruction mix, 
- memory behavior. 

The results obtained quantifying the similarity with the chi-square goodness-of-fit test, as exposed in 
[31], show that function level execution matches the behavior of the reference set reasonably well but not 
so for the instruction mix and memory footprint. Nevertheless, these published results had to be amended 
after a software bug was discovered in the SimpleScalar simulator and new, corrected results are shown in 
[1]. 

Eeckhout, Vandierendonck y De Bosschere in [12] show an alternative validation for the 
MinneSPEC proposal applying phase methods. This comparison use additional workload characteristics 
to the ones mentioned before (function execution, instruction count and memory footprint) such as 
instruction cache miss rate and branch prediction. The conclusion is that the large workload (lgred) 
behaves similar to the reference workload but not so the medium (mgred) and small (sgred) workloads. 

The validation of MinneSPEC [31] based on characteristics from function-level execution profiles 
using chi-square as distance quantification generally fits with the evaluation from Eeckhout et al. [12] 
based on phase techniques. However, they show there can be differences when accounting for the other 
factors and find differences in program behavior even among pairs of inputs used for the same program. 
 

2.1.2. Subsetting 
 

Citron in [4] shows that the SPEC suite is used only partially in the work presented on the most 
relevant Computer Architecture events. So, the immediate question to pose is: is this partial usage a 
representative one? Phansalkar et al. [42] say that it depends on the actual subset being used. 

The SPEC suite programs are redundant because of similarity in programs (see Section 1.2.2 
Redundancy). An adequate selection can be convenient in order to decrease evaluation time10. 

Citron in [3] made an alert on the potential fragility of the results when conclusions are gathered in 
sub-sets selected without adequate assessment. In [4] Citron and Sohi together with Hennessy and 
Patterson develop this subject commenting on a study made in the context of papers presented at a 
conference. There, 90% of the papers providing measures used the SPEC, but a subset of the benchmarks 
was used instead of the full set in about 70% of the cases. But then only 30% of these explained why, and 
it was mentioned that, in some cases the subset consists simply of the benchmarks that did compile. 

Phansalkar, Joshi and John propose measuring workload similarity using phase techniques in order 
to avoid redundancy and reduce the number of programs in the tets set thus saving experimentation 
(simulation) time. Their proposal based on the SPEC CPU2006 is in [41]. 
 

                                                 
10 The problem is that the subsets analysed by Citron are due to compilation difficulties, problems with system calls, problems with 
libraries, and so on, instead of a careful selection. Consequently, results can be considered incomplete [4]. 
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2.2. Sampling 
 

Sampling reduces workload to evaluate (by simulation or analysis) using only segments of 
execution. The simplest way to select those segments is by random sampling or uniform sampling. Using 
a more sophisticated method, we may impose some restrictions such as forcing the sample to be from the 
application essential part or, in general that it should be a representative sample. A popular technique to 
measure the representativity of the sample is to use quantification of similarity methods (see Section 
1.2.2.1 Quantification of Similarity). 

Sampling may also be used together with reduced input data sets. 
There are some tools developed by the scientific community to select and analyze samples 

automatically. As examples we have SMARTS [57] and SimPoint [47]. Yi and Lilja make some 
recommendations about how to use the method of sampling [61]. 

According to Luo et al. [35], it is extremely important to quantify similarity in order to be confident 
on the quality of the samples. Changing the characteristics set to evaluate or using different grouping 
algorithms takes to different results. This is one of the main problems with sampling. 

Another problem with sampling techniques is that the machine state when the simulation (evaluation) 
process is started is not the same than it was at the point of execution of the program where the sample 
was actually taken. Therefore, this can produce unrealistic results. Designing a solution to this problem is 
not easy: we shortly comment on it in the next section. 
 

2.2.1. Checkpointing and warmup techniques 
 

The big problem with using sampling to reduce workload is the impact produced by the so called 
initial state. When a sample is being processed the state of the machine must be as close as possible to the 
real case in architectural terms −registers and memory− and at the micro-architectural level −branch 
prediction, cache state, etc. −. This is very important for results to be realistic. 

The way to solve this problem, in general terms, is to save the initial state during a real execution 
right before sampling and then apply it later upon evaluation of the sample. The name checkpointing is 
used for the process of state saving and warmup is the technique name used for restoring the state when 
the sample is performed later [19]. Ringenberg's thesis proposes and explains several methods and tools 
to do this [43]. 
 

2.2.2. SPEClite 
 

An example of sampling using phase techniques (see Section 1.2.2.1 Quantification of similarity) is 
SPEClite [53]. The method used to find the right sample is to monitor program execution (using the 
hardware counters in the Itanium in this case) and measure a set of variables. These variables are reduced 
using PCA (Principal Component Analysis) and then the distance among them is evaluated clustering the 
samples in order to select the most representative ones. 

The author of this work specifies the following advantages of his proposal: 
- it is a black box approach that only requires the binary code thus needing no precise knowledge 

at all of the source code11, 
- the use of statistical analysis permits identification of representative samples, 
- the technique can be applied to any hardware and the sampling can be adapted to that 

hardware, 
- the process can be automated, 
- the methods permits extrapolation and result prediction based on sample representativity. 

He also states some disadvantages: 
- a sample in a given hardware today does not have to be good for another hardware in the 

future, 
- the selection technique is strongly dependent on the clustering algorithm used. 

SPEClite was expected to deliver a complete subset representing the whole suite SPEC CPU2000 but 
the project was completed. 
 

                                                 
11 This is not so good according to Sohi [5] as we mentioned before. 
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2.3. Analytical modeling 
 

Analytical modeling is not a very much extended technique although it has been used sometimes [3, 
38, 49]. It consists on the definition of mathematical models which tend to work with statistical data 
which allows reducing experimentation time considerably. 
 

2.4. Statistical simulation 
 

Statistical simulation consists on the generation of synthesized workloads by gathering statistical 
information. The idea is to record information out of a set of variables chosen as the characteristics 
describing the behavior of a testbench in a real machine (execution profile) and then obtain a workload 
that fulfill those requirements by the process of synthesis. The synthesized workload may a binary trace 
(trace synthesis) or a source code program that should be compiled later (program synthesis). 

Statistical simulation is used in this works [11, 25, 39, 40]. 
 

2.4.1. Trace synthesis 
 

In the case of trace synthesis a synthetic trace is generating out of an execution profile which is then 
introduced in a trace-driven simulator in order to carry out the experimentation. 

Oskin et al. [40] proposes HLS, a trace synthesis tool. This tool executes a program into a simulator 
and then obtains execution statistics. With these statistic figures it builds an instrumentalized trace  which 
contains statistical information. Finally, a statistical simulator interprets this trace. Results obtained with 
these methods differ from the SPECint95 on 5 – 7%. 

Nussbaum and Smith do something similar obtaining an execution profile which is introduced in the 
simulator [39]. 

Other authors propose obtaining a synthetic trace out of real trace [10]. 
 

2.4.2. Program synthesis 
 

In the case of program synthesis, a C language program is build out of an execution profile. Once 
this source code is compiled, the binary obtained is in conformant to the required profile. Finally, this 
executable is evaluated into an code execution-driven simulator. 

Bell and John in [2] are an example of this type of technique. 
 

3. Workload reduction approach 
 

Among all the methods addressed by the relevant literature we decided to choose input data sets 
reduction (see section 2.1.1, Reducing input data sets). 

The main goal is to reduce the number of executed instructions down to a number of, approximately 
100 millions (108) executed instructions. It would also be a secondary benefit to reduce the amount of 
memory consumption. 

The idea is to avoid program code changes and work with input data only. In summary we must 
analyze the instruction counts (and the memory usage profile) upon program arguments modifications. 
The goal is to discover the possible relations between these arguments and the dynamic instruction count 
and, consequently, the processing time12. 

Once the new input data sets are defined, we analyze the distribution of instruction types, CPI, 
procedure call and system calls as well as the memory profile produced and compare it with the 
corresponding figures for the reference workload. 

In the following sections we perform an in-depth analysis of each benchmark of the SPEC CPU2006 
integer suite (SPEC CPUint2006) from different perspectives, including the influence of each of the input 
data set used into the actual workload with the purpose of helping researchers finding a representative set 
                                                 
12 Processing time is a function of the instruction count and the CPI, if the CPI profile is not changed, the processing time would be 
uniformly proportional to the instruction count. But, usually, the CPI is not maintained easily. 
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of workloads for the SPEC CPUint2006 programs to use in their experiments whenever they have to 
discard using the reference workload due to time or resource constraints. 
 

3.1. 400.perlbench 

3.1.1. Description 
 

The program 400.perlbench is a cut-down version of Perl v5.8.7, the popular scripting language. 
SPEC's version of Perl has had most of OS-specific features removed. In addition to the core Perl 
interpreter, several third-party modules are used [20]. 
 

3.1.2. Input data driven behavior 
 

The input data sets for 400.perlbench consist of a variety of scripts. As can be seen in a previous 
technical report, each invocation produces quite different workloads when they are described by 
microarchitecture-independent characteristics [13]. Program 400.perlbench exhibits quite different 
subroutine call distributions for each invocation, which means that the program follows different 
execution flow paths depending on the inputs. 

Program 400.perlbench under the test workload is called several times with different inputs and each 
invocation produces a very low dynamic count each. Thus, any one input data set from the test workload 
can be chosen to decrease the executed instruction count since the subroutine call distribution suggests 
that every invocation exercises different execution flow paths and then it is reasonable to say that 
selecting one invocation or another would be as much adequate as incomplete at the same time. 
 

3.2. 401.bzip2 

3.2.1. Description 
 

The 401.bzip2 benchmark is a modified version of the popular bzip compressor accessing disk only 
to read the input; the only output of the program is to the standard output as short messages to indicate 
execution progress. Compression and de-compression occurs entirely in memory [20]. 

Two arguments are passed to the program: the file name to read containing the basic data to 
compress and de-compress, and the buffer size. The program starts reading the input file into memory, 
then this data is duplicated several times up to buffer size in MB thus in creasing the size of the sample. 
Compression and decompression is then performed for three compression factors: 5, 7 and 9 (also called 
blocking factors). Decompressed data is compared to the original image and a short message states that it 
compared successfully. 
 

3.2.2. Input data driven behavior 
 

Table 1 shows the invocation parameters making up the reference workload used for each input set, 
and some dimension related values taken for each invocation. 

The first column shows the elapsed times for each invocation. These times are just a reference for 
comparative purposes and they were taken for Pentium processor. Next column data is a percentage of the 
time spent in that invocation with respect to the total time of the workload set. The following two 
columns show the input buffer size and its contribution to the actual total amount of input data processed 
by the program in the reference set. The last three columns show the percentage of data compression 
obtained when the 401.bzip2 benchmark is used to compress the input buffer data with compression 
factors 5, 7 and 9 respectively. 
 

Table 1. Input data for 401.bzip2 using the reference workload and some figures used for comparison. 
 elapsed time input buffer compression factor 
 secs % total bytes % total 5 7 9 
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chicken.jpg 30 131.40 7.81% 31,457,280 2.73% 0.5 3.3 17.5
liberty.jpg 30 259.90 15.45% 31,457,280 2.73% 30.3 43.7 56.3
input.program 280 251.50 14.95% 293,601,280 25.45% 65.8 65.3 64.9
input.combined 200 412.84 24.54% 209,715,200 18.18% 78.6 79.1 79.4
input.source 280 309.47 18.40% 293,601,280 25.45% 81.5 81.7 82.0
text.html 280 317.03 18.85% 293,601,280 25.45% 92.4 93.9 95.1

 
There are three types of inputs: images, text and binary code. Images represent almost 23.3% of the 

total reference workload in terms of time and almost 5.5% in terms of size13. The images used as inputs 
show the lowest compression obtained amongst the input. The image chicken.jpg shows a 
compression percentage extremely low, in particular for a compression factor of 5. It substantially 
improves the amount of compression reached for a 9 factor compared to 7 and of course 5. In the other 
image (liberty.jpg) this is not so dramatic at all. It tends to behave more like the rest of input types 
where the compression reached for 5 and 7 is closer to the one obtained with the 9 compression factor. 

Text is about 62% of the total reference workload in terms of time and slightly over 69% in terms of 
size14. Text type inputs show very high compression levels (almost 80% to 95%) and they don't show 
excessive improvement in the amount of compression reached at factors higher than 5. 

Binary code represents in practice 15% of the total reference workload in terms of time and slightly 
over 25% in terms of size15. The executable file too exhibits practically no impact of the compression 
factors into the compression achieved which is, as can be expected, more conservative than that of text 
files, achieving about 65% compression. 

We can reduce the workload making the program to use only one compression factor. Compressing 
at factor 7 looks a good choice. Figures in table 1 show that it is a good representative of the compression 
quantity that is achievable in each case. It would generate a third of the instructions compared to 5+7+9 
factors. The problem is that we need to change the program (alter the benchmark) and this can disappoint 
people. 

Without changing the code of the benchmark, we can generate a single input file showing a mix of 
the different input types we have classified keeping its relative weights. In case of text type of input, the 
compression achieved is about the same for the 3 compression factors. It means its behavior is very 
regular; and its total weight is about 70% in terms of size. The binary file is also regular and must be 
present in about 25%. The 5% remaining should be a picture. This mix should be scaled in such a way 
that produces the desired instruction dynamic count. 
 

3.3. 403.gcc 

3.3.1. Description 
 

The program 403.gcc is based on gcc Version 3.2. It generates code for an AMD Opteron processor. 
The benchmark runs as a compiler with many of its optimization flags enabled. It has had its inlining 
heuristics altered slightly. This was done so that 403.gcc would spend more time analyzing its source 
code inputs, and use more memory. Without this effect, 403.gcc would have done less analysis, and 
needed more input workloads to achieve the run times required for CPU2006 [20]. 
 

3.3.2. Input data driven behavior 
 

The input data sets of each invocation correspond to files that are preprocessed C code (.i files). As it 
can be observed in a previous technical report [13], the behaviour of the program is quite no-elastic, that 
is, every invocation always produces a large amount of dynamic executed instructions. 

Taking into account that a “hello world” program already takes 20 million instructions, we deleted some 
C functions from the smallest program used in the invocations of the test workloads until a satisfactory 
dynamic count was obtained; in our case that was 257 millions for a 464 lines of code with 16 functions. 

                                                 
13 For the test workload, the processing of images takes about 67.8% of total time and represents 28.6% of the total input size while 
for the train workload they take 11.4% of the time and 5.3% of the input size. 
14 For the test workload, no text files are used while for the train workload, text files represent 78% of the time and a bit more than 
84% of size. 
15 Binary code takes 32.2% of total execution time and a 71.4% of the size for the test workload, and about 10% for both time and 
size in the case of the train workload. 



Reduced input data sets selection for SPEC CPUint2006 

  13 

As far as the representativeness is concerned, 403.gcc exhibits quite different subroutine call profiles 
for each invocation (as it also happens with 400.perlbench), which means that the programs follows 
different execution flow paths depending on the inputs, thus concluding that any one invocation can be 
considered adequate and incomplete at the same time. 
 

3.4. 429.mcf 

3.4.1. Description 
 

The 429.mcf benchmark is a C program for the scheduling of a single-depot vehicle fleet in public 
mass transportation. A timely plan expressed as time-table trips with fixed departure/arrival locations and 
times is used to assign a vehicle to each trip. Trips are linked by the so-called dead-head trips and to enter 
and leave the base there are pull-out and pull-in trips. These three trips types have associated cost 
coefficients which have to be minimized by the algorithm used as well as the number of necessary 
vehicles to schedule all time tabled trips. The algorithm used is a network simplex algorithm. This 
program is basically the same as in the CPUint2000 set, but the input files are designed to obtain longer 
execution times, thus increasing the heap data size, and with it the overall memory footprint [20]. 
 

3.4.2. Input data driven behavior 
The program 429.mcf takes time-table entries from a file which contains the number of Timetabled 

Trips (TT) and Dead-Head trips (DHT); for each TT trip it states the starting and ending time and then it 
lists all links for pairs of TT which are DHT and its cost. 

The strategy to define a reduced input is to monitor the executed instruction count vs. a reduced 
timetable specification. For this, we build a new input file taking the original input file, say the one for the 
test workload, and change the number of trips (TT in first line) to N and select only the first N trips 
together with the DHT which link those N trips. After selecting the right DHT entries, we count them and 
complete the first line of the new file, assembling the new input file. 
 

Table 2. Executed instructions in 429.mcf according to the number of 
the TT and DHT arguments. 

TT DHT millions of executed instructions 
100 51 3.8 
799 6,141 115 
999 9,296 164 

5,985 84,449 (test workload)               4.8 
13,225 164,741 (train workload)     24,000 
25,137 185,356 (reference workload)   357,000 

 
We obtained some figures increasing TT from 100 on to find the most convenient size of the input 

graph, as shown in Table 2. The last three rows correspond to the three SPEC workloads. A range of 799 
to 999 nodes can produce an experimentally adequate number of executed instructions. 
 

3.5. 445.gobmk 

3.5.1. Description 
 

The program plays Go and executes a set of commands to analyze Go positions. This benchmark is 
typical in SPEC CPU suites as it has been included in other releases [20]. 
 

3.5.2. Input data driven behavior 
 

Most input is in "SmartGo Format" (.sgf), a widely used de facto standard representation of Go 
games. A typical test involves reading in a game to a certain point, then executing a command to analyze 
the position. 
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From the SPEC CPUint2006 characterization [13], we observe that this benchmark is a non-elastic 
binary, that is, it produces a regular dynamic executed instruction count for different input data sets. 
Moreover, we know that for each invocation of 445.gobmk the program exercises similar execution flow 
paths. Then, researchers may select any invocation that best fits their needs from the test or train 
workload sets. 
 

3.6. 456.hmmer 

3.6.1. Description 
 

DNA pattern sequence searching is based on statistical models such as Hidden Markov Models 
profiles (HMMs) for multiple sequence alignments. The benchmark includes a search function for 
sentitive searching in a statistical descriptions database and a calibration function to calibrate HMM 
search statistics. Train and test workloads as well as one of the two invocations of the reference 
workloads use the calibration function with different calibration files each. The second invocation of the 
reference workload uses the search function to find patterns in a database file (sprot41.dat) [20]. 
 

3.6.2. Input data driven behavior 
 

The arguments used for the test invocation which uses the calibration function, its meaning and the 
impact of each in the dynamic instruction count are the following: 

- fixed: random sequences length; if 0, a normalized gaussian distribution is used to control 
the length of the generated sequences 

- mean: mean length of synthetic sequences (350 by default); this directly impacts the number 
of executed instructions 

- num: number of synthetic sequences (should be greater than 1000 and 5000 by default); also 
affects dynamic counts decisively 

- sd: standard deviation for the length of the synthetic sequences (350 by default); it doesn't 
affect much dynamic counts. 

- seed: random seed used; by default time() function is used. It has no effect on the number of 
executed instructions 

Therefore, we should use different values for arguments mean and num. In Fig. 1 we present the 
evolution of dynamic count vs. variations of num for different mean values. We can observe how scaling 
num from 45000, which the test workload value for this argument, down to 5000 (default value), the 
number of executed instructions decreases by an order of magnitude for different values of argument 
mean. If we keep decreasing num down to the limit 1000 beyond which it is not allowed to pass, we can 
still decrease dynamic counts by an additional order of magnitude compared to the test workload test.  

Under the train and reference workloads, this benchmark executes a single subroutine for more than 
95% of the execution time. For the test workload the percentage of time in that subroutine is slightly 
smaller than 70%. For a workload using num = 1.500 it is relaxed to 62%. This can be a convenient 
situation for testing purposes since it presents a less peaky profile. 

 
Fig. 1. Dynamic counts of 456.hmmer vs. option num for different values of option mean. Y axis is in 

logarithmic scale. 
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3.7. 458.sjeng 

3.7.1. Description 
 

This an artificial intelligence program for chess. The input is a text file containing a variable number 
of lines containing two informations: the position in the board of the chess pieces using FEN (Forsyth-
Edwards Notation) and the depth for the search of possible moves (position analysis depth). Each file line 
corresponds to a new program execution [20]. 
 

3.7.2. Input data driven behavior 
 

Depth affects execution time and, consequently instruction count too. Memory usage seems 
independent of both parameters since it is maintained in about 180.000KB all the time. After a quick look 
at the program we observe that memory requests are independent of depth and position. 

In order to better understand the relation between depth and instruction count, we performed some 
tests, selecting 4 scenarios (states, situations) on the board specifying the corresponding FEN coordinates 
and these were input to the program using position analysis depths 1 to 10. The following are the scenario 
used in each round: 
 

Table 3. FEN coordinates used for testing 458.sjeng.
testPOS1 r3kb1r/3n1pp1/p6p/2pPp2q/Pp2N3/3B2PP/1PQ2P2/R3K2R w KQkq - bm d6; id "LCT2-POS-01"

testPOS2 1k1r3r/pp2qpp1/3b1n1p/3pNQ2/2pP1P2/2N1P3/PP4PP/1K1RR3 b - - bm Bb4; id "LCT2-POS-02"

refPOS6 8/3b4/5k2/2pPnp2/1pP4N/pP1B2P1/P3K3/8 b - - bm f4; id "LCT2-FIN-06"

refPOS7 r4r1k/pbnq1ppp/np3b2/3p1N2/5B2/2N3PB/PP3P1P/R2QR1K1 w - - bm Ne4; id "KASP-1"

 
They were all taken from the SPEC workloads: the first 2 from the test workload and the other 2 

from the reference workload. Tabla 4 shows the results obtained. 
 

Table 4. Executed instruction count for the 458.sjeng program for the different depth values used 
in 4 different scenarios. 

Depth testPOS1 testPOS2 refPOS6 refPOS7 
1 11.649.617 11.623.104 11.485.428 12.495.003 
2 13.539.288 14.832.823 11.927.435 16.196.008 
3 18.223.516 17.058.114 12.484.079 27.419.780 
4 26.415.024 26.069.145 16.595.774 63.482.813 
5 45.415.616 60.022.667 22.310.129 135.031.060 
6 92.666.606 116.056.546 33.570.361 755.331.078 
7 229.183.640 291.685.649 45.561.373 1.790.128.125 
8 1.921.354.106 550.733.349 92.143.753 16.155.050.225 
9 4.377.332.556 1.277.611.078 164.398.472 30.254.455.017 

10 8.696.563.868 2.600.004.037 592.725.929 380.946.797.626 
 

Graph in Fig. 2 shows program behavior. Executed instruction counts are in logarithmic scale for 
each series. 
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Fig. 2. Executed instruction count for program 458.sjeng for the different depth values used in 4 different 
scenarios. Y axis is in logarithmic scale. 

 
The main in influence on instruction count comes from the analysis depth and the complexity of the 

board state is next. We register executed instruction counts ranging from 107 to the 5·1011. 
 

3.8. 462.libquantum 

3.8.1. Description 
 

The program is based on a library for the simulation of quantum computers. Specifically, it includes 
an implementation of the Shor’s factorization algorithm. The input is an argument representing the 
number to factorize. A second optional argument called base may be provided specifying a ramdom seed 
for the modular exponentiation of the Shor’s algorithm [20]. 
 

3.8.2. Input data driven behavior 
 

The magnitude of the factorizing number affects execution time as well as used memory size. The 
second optional parameter, base, has no relevant impact on the execution time. 

We defined a test set using different combinations of factorization number and base. Fig. 3 
represents the mean instruction count for the different combinations. Standard deviations are neglectable. 
Instruction count increases with the factorization number (although there can be some local factorization 
consuming less time). The base optional parameter has not noticeable impact into the final count. 
 

 
Fig. 3. Instruction count mean for each factorization number with different bases (program 

462.libquantum). 
 

For the range of arguments used in the tests, we obtain from 2·107 to 5·108 executed instructions. 
 

3.9. 464.h264ref 

3.9.1. Description 
 

This program implements the h.264/avc video compression latest generation algorithm. It may 
operate in baseline mode (good compression, fast coding) or in main mode (very good compression) [20]. 

The invocation argument is a configuration file which sets an uncompressed video sequence in 
YUV16 format and a large number of operation parameters. When the program works under the baseline 

                                                 
16 The SPEC workloads only work alternatively over two video sequences in YUV format without compression: 
foreman_qcif.yuv (120 frames of 176x144 pixels); and sss.yuv (171 frames of 512x320 pixels). 
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mode, the only parameter is being modified among the different configuration fields is the number of 
frames (FramesToBeEncoded) to be processed. Under the main mode, many more parameters are 
modified. 
 

3.9.2. Input data driven behavior 
 

Workload changes according to the values given to the parameters found in the configuration file. 
From all these available parameters, we try to focus on the ones showing evident meaning to avoid having 
to deal with a deeper knowledge of signal treatment techniques. 
 

 
Fig. 4. Instructions executed for program 464.h264ref vs. number of frames to encode. 

 
The chart in Fig. 4 shows how executed instruction count grows with the number of frames to 

encode (parameter FramesToBeEncoded), thus concluding that this parameter has a decisive impact on 
it. However, this is not enough because even for the lowest computational load (550 millions 
instructions), our limit is exceeded (100 millions). 

We also tried the parameter for number of reference frames (NumberReferenceFrames) but it was 
not relevant. 

The size of the image or frame is the multiplication of width (SourceWidth) and height 
(SourceHeight). The following chart shows a direct (almost linear) dependency between instruction 
count and image size. Therefore, this parameter does allow a more efficient way to decrease the number 
of executed instructions. 
 

 
Fig. 5. Dynamic instruction counts of program 464.h264ref vs. image size (percentage of original area) 

for different values of the parameter frames to encode. 
 

For the arguments rage used in the tests we can obtain instruction counts ranging from 8·106 to 7·109 
executed instructions. 

This program is quite susceptible to changes in instruction set architecture between x86-32 bits and 
x86-64 bits because function calls are much faster in 64-bit mode since the calling convention allows up 
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to 8 arguments to be passed through registers (because of the availability of additional registers) in 
contrast with 32-bit mode where arguments are passed through the stack. As a result, there are more 
instructions and more memory accesses in the 32-bit version of 464.h264ref, causing about a 2x 
slowdown performance as reported in [59]. 
 

3.10. 471.omnetpp 

3.10.1. Description 
 

The benchmark performs discrete event simulation of a large Ethernet network. The simulation is 
based on the OMNeT++ discrete event simulation system, a generic and open simulation framework. 

This program simulates an Ethernet network described in a file (input file omnetpp.ini) written in the 
NED language [20]. This file contains several parameters affecting basically, the following: 

- output stream control: to screen and files 
- topology of the network to simulate 
- network traffic model and total time to simulate. 

Concerning I/O, screen output is controlled by parameters express-mode and status-
frequency. If the first one is set to true it forces an operation mode with few messages whereas the 
second one allows setting the number of events after which a status message should be written to the 
screen. Parameters *.enabled and *.writeScalars control whether or not statistics files are to be 
generated. 

The topology of the network is described through many parameters. Among them all it can be worth 
mentioning the length of requests and answers (*.cli.reqLength and *.cli.respLength) as well as 
the time between request requests (*.cli.waitTime). For all the workloads the value of 
*.cli.reqLength is a distribution along the range 50-1400. Parameter *.cli.respLength is a 
normalized distribution truncated to non-negative numbers with average 5000 and standard deviation 
5000 for the train and reference workloads. For tests it is 3000 for both values. The parameter 
*.cli.waitTime is an exponential distribution whose average is the reciprocal of requests per second. 
That is, the inverse of *.cli.waitTime represents the average of requests per second. These parameters 
are modelled through random distribution functions defined in the NED language. 

Finally, simulation time is given by sim-time-limit. This parameter can be specified in different 
time units: us (microseconds), ms (milliseconds), s (seconds), etc. 

It is also relevant to mention that the program goes through an initial phase where it reads the 
configuration file setting up the network according to the read-in parameters and then enters a second, 
final phase where simulation takes place. 
 

3.10.2. Input data driven behavior 
 

The fundamental differences between the files for the test, train and reference workloads are: 
- the topological complexity of the network described in each case; 
- simulation time; 
- average requests per second; and 
- request and response lengths 

The main factor affecting instruction count is the complexity of the network topology. There is a 
single network in the case of test and reference while there are two of similar complexities in the case of 
the train workload. Out of the four networks proposed by the SPEC consortium, the one for reference is 
the most complex while test is the one with the lowest complexity (produces lower execution counts). 

Simulation time (sim-time-limit) influences dramatically the amount of executed instructions 
too. 

For testing purposes, we took separately each of the networks proposed (one for test, 2 for train and 
one for reference) and processed them with different simulation times. 

Results are shown in the following chart. First we observe that both topologies proposed for train are 
practically the same. 

Executed instruction count grows with workload (test -> train -> reference). We see that only a few 
simulation times for the test network topology allow remaining fewer than 100 million instructions (our 
objective limit). 
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Fig. 6. Instruction count vs. limit of simulation time for program 471.omnetpp. There are a series for each 

network topology of the 3 workloads. Train workload has 2 networks which produce extremely similar 
results, so these cannot be distinguished in the graph and then we plot only one of them. Y axis has 

logarithmic scale. 
 

Request length (*.cli.reqLength) slightly conditions instruction count. Response length 
(*.cli.respLength) influences the count in a way inversely proportional to the average. The time 
between requests (*.cli.waitTime) influences is inversely proportional to the count. 

However, all the modifications of parameters *.cli.reqLength, *.cli.respLength and 
*.cli.waitTime which allow to modify the operation mode in the network without altering its topology 
does not substantially reduce the executed instruction count. 

Consequently, the only option is to use the test network (the simplest topology) modifying 
simulation time limit. This way, we may obtain counts ranging from 6·106 to 8·109 executed instructions. 
 

3.11. 473.astar 

3.11.1. Description 
 

This program implements path-finding algorithms using Artificial Intelligent techniques that are 
commonly applied in games. An input file defines the binary map to use and other parameters used in 
these algorithms such as the number of paths to simulate, region size, density and others [20]. 
 

3.11.2. Input data driven behavior 
 

The input data set is a text file specifying values for several parameters and the name of a file 
containing a binary map. This binary map file is really a file of bytes which can take the values 0, 1 or 2. 
Additionally, it includes a heading section made of 8 bytes which specify the map dimensions according 
to axis X and Y (four byes per dimension). The program reads in these dimensions and builds a binary 
map repeating the data found in the file as much as needed (a fixed value written in code). The test 
workload binary map file size is 64KB plus the 8 byes for the heading setting the map size. The bytes 
used for dimensions are organized orderly for growing offset. So, the lowest weight corresponds to the 
first byte, the following weight to the second, and so on. Original map dimensions for binary map 
lake.bin from the test workload are 00 01 00 00 and 00 01 00 00 which correspond to 00000100h x 
00000100h, that is, 256 x 256. Smaller dimensions means to build a binary map usually more uniform 
and then easier to explore. 

Parameters present in the input text file refer to two types of configurations: profiling of the area and 
amount of work to perform (first with the input binary map file and then with a map created randomly). 
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About profiling of the area, we have a parameter that measures the degree of obstacles in the map 
(random map density). The workload is inversely proportional to it since the resolution is worst then 
there are fewer obstacles and fewer regions. 

For reducing the amount of work to perform, we should reduce the size of the random map changing 
the argument random map size x and y. 
 

3.12. 483.xalancbmk 

3.12.1. Description 
 

This program is a modified version of Xalan-C++, an XSLT processor written in a portable subset 
of C++. This program transforms XML documents into HTML documents [20]. The input is an XML file 
and an XSL style sheet. 

The test and reference workloads style sheets are identical. The train workload style sheet is simpler. 
XML files are larger for a larger workload. So, the test workload is different from the reference workload 
only in the size of the XML document used. 
 

3.12.2. Input data driven behavior 
 

The only option to reduce workload in a substantial way is to modify the XML document file 
making it simpler. 

The following chart shows the number of executed instructions for different XML documents which 
were obtained by modifying the original document used for the test workload. They are simpler in the 
right side of X axis in the graph where we can observe how the instruction count tends to decrease. 
 

 
Fig. 7. Instruction count for the program 483.xalancbmk for different input XML documents. They are 

simpler for growing values of the X axis. 
 

Additionally, we can also omit argument –v which forces a validation producing a little more code 
execution. 
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