

SPEC CPUint2006 characterization

Technical Report TR-HPC-01-2009

Rafael Rico, Virginia Escuder

Department of Computer Engineering, Universidad de Alcalá, Spain

April 2009

Index

1. SPEC benchmarks... 2

1.1. The SPEC CPU suite ... 2
1.2. SPEC CPU2006 description .. 2
1.3. Concerns about SPEC CPU and alternatives ... 3

1.3.1. Simulation time reduction ... 3
1.3.2. Subsetting.. 3

2. SPEC CPUint2006 characterization.. 4
2.1. Executed instruction count in the SPEC CPUint2006 ... 5
2.2. SPEC CPUint2006 memory usage... 6
2.3. SPEC CPUint2006 subroutine call distribution ... 6

3. Conclusions... 7
4. Some recommendations for selecting a representative workload ... 8

4.1. Execution time constrained scenario.. 8
4.2. Memory size constrained scenario... 8

References.. 10
Annex I: dynamic instruction count in the SPEC CPUint2006.. 12
Annex II: memory usage profiles in the SPEC CPUint2006.. 15
Annex III: subroutine profiles in the SPEC CPUint2006... 24

Abstract

SPEC CPU benchmark suite has become the most frequently used suite for computer architecture
research. The workload is designed to stress the hardware of the machines for the next following years.
Consequently, both the executed instructions count and the memory map size have been considerably
increased in the currently in use release, the SPEC CPU2006, compared to the previous one. But this fact
results in prohibitive experimentation time or resources requirements for research using simulation
techniques or embedded developing tools.

There is considerable material in the relevant literature discussing about the correct use of SPEC
CPU benchmarks and alternatives to avoid problems in the experimentation area. There are some studies
undertaking characterizations of the SPEC CPU benchmarks from different points of view, but these are
always focused in the reference workload set.

In this technical report, the three sets of workloads supported by SPEC for the CPUint2006 suite,
test, train and reference, are analysed in attention to three microarchitecture-independent characteristics:
dynamic instruction count, memory usage, and subroutine call distribution. The contents include
explanations of why they are selected, how they are used to characterize each benchmark program as well
as how much microarchitecture-independent they really are. Results are presented for each individual
invocation of the programs, including some remarks and conclusions.

The results from this work will help researchers to find a representative set of workloads for the
SPEC CPU int2006 program binaries to use in their experiments whenever they have to discard using the
reference workload due to time or resource constraints.

R. Rico, V. Escuder

2

1. SPEC benchmarks

SPEC is the acronym for Standard Performance Evaluation Corporation, a non-profit organization
whose purpose is to define and maintain a set of standard benchmarks for computer systems and make
them available to the users of such systems as a common reference point in the evaluation of computer
performance. It is participated by computer manufacturers, system integrators, consultants, publishers,
universities and research organizations [22].

Since its foundation in 1988, the SPEC consortium has developed and distributed technically reliable
benchmarks based on real applications. The selection of inputs and workload is performed by the
consensus amongst consortium members willing for a transparent, comparable, reproducible and non-
proprietary solution, as the organization aim is “an ounce of honest data is worth a pound of marketing
hype”.

SPEC currently offers benchmark suites for the evaluation of different aspects of computation such
as performance of CPU, graphics, distributed Java computing, web-servers, and network file systems.

1.1. The SPEC CPU suite

The benchmark suite from the SPEC organization in the field of performance quantification for
intensive-computing is the SPEC CPU suite. The SPEC CPU suite aim is to be representative of
programming style and application fields of real worldwide computer-intensive workload.

The first delivered set in 1989 had 10 programs and it was known as SPECmark. The most recent
generation of the set was announced on August 24, 2006 (SPEC CPU2006) and it is made of 29 programs
classified into two groups: one for integer computation (SPEC CPUint2006) and the other for floating
point computation (SPEC CPUfp2006). A more complete historical perspective of computer-intensive
tests can be found, for instance, in Henning's work [10].

SPEC CPU programs are well known real world applications written in high level, portable,
language (C, C++ or FORTRAN) with slight code modifications in order to minimize input/output and
thus let the processor, memory and compiler be the factors under evaluation. In fact, it is a requirement
that input/output workload is less than 5%. Another requirement is that memory consumption and
execution time should be significant for each generation of computers with growing power and capacity.
The organization has strict restrictions of evaluation rules affecting code, compilation flags and other
aspects of execution environment of the test programs.

The workload sets the amount of processing performed by each benchmark run. The tools distributed
by SPEC allow the specification of three different sizes of input data producing different workloads: test,
train and reference (“ref” for short). The reference size stands for the reference workload, that is, the input
data and command-line options when applicable, used for actual measurements. The test input sets are
only used to check that programs compile and execute correctly before launching a real run or to tune up
optimization options. Similarly, train inputs are used for profile-based compiler optimizations, so the
reference set is the only reportable set.

The SPEC CPU suite has a widespread usage by computer vendors, it is widely accepted by
consumers and it is very commonly found too in the academic and research worlds although there is an
outstanding debate about how to use it, its convenience and drawbacks, and whether is it or not necessary
to design an alternative for research usage, etc. [1, 2].

1.2. SPEC CPU2006 description

The SPEC CPU2006 benchmark suite consists on a set of 12 programs for integers (SPEC
CPUint2006) written in C and C++ and 17 programs for floating point (SPEC CPUfp2006) written in C,
C++ and FORTRAN. The objective of these computer-intensive programs is to provide portable, credible
and real-world application-based benchmarks for quantifying the performance of the set processor,
memory and compiler.

In the relevant literature we can find several papers undertaking the description of the suite from
different perspectives. A description for all of the programs of the suite SPEC CPU2006 can be found in
one of the Henning works [9] and a detailed explanation about the C++ suite programs, in an article
written by Wong [26]. Design requirements of the suite SPEC CPU2006 have established the memory

SPEC CPUint2006 characterization

 3

consumption top in about 900MB, allowing the suite to run on machines with 1GB of memory. The
memory utilization of the programs running under the reference workload is analyzed in Henning [11]
and Gove [4]. The paper by Korn and Chang studies how different page sizes affect the performance of
the benchmarks [16]. From the I/O perspective, an article from Ye, Ray and Kaeli [29] show that the I/O
activity of the SPEC CPU2006 is far below the limit of 5% imposed by the organization. The subroutine
call profile of the suite SPEC CPU2006 for the reference workload is presented in Weicker and Henning
[25]. The article by Gove and Spracklen provides an interesting evaluation of correspondence between
train and reference workloads in SPEC CPU2006 [5]. Other works discuss how to interpret performance
counters in the context of SPEC CPU2006 [12], or how the benchmark tools work [23], or which are the
main performance differences between x86-32 and x86-64 binaries.

1.3. Concerns about SPEC CPU and alternatives

As computer systems get faster and have more memory because it gets cheaper, the benchmark run
times and memory consumption have also increased across generations [10] to ensure that the
benchmarks can stress the target systems enough to make meaningful measurements. The SPEC CPU
benchmark suite is used by manufacturers to report performance of their systems, by customers to make
purchasing decisions, and by designers and researchers to evaluate novel ideas. However, although it is a
pretty good tool for the computer market, it significantly increases the cost of performance evaluation as
explained by KleinOsowski and Lilja in [15] and Haskins et al. in [8] among other authors. So, although
this set has become the most frequently used suite for computer architecture research, it can also be
detected that experimentation is actually carried using the SPEC CPU benchmarks only partially, and this
sub-utilization is not always well justified [1, 2].

The strategy followed by the research community to cope with this situation follows two principal
directions. One is to develop techniques to reduce experimentation time, and the other is finding a smaller
representative subset of the benchmark programs.

1.3.1. Simulation time reduction

The reduction of input data sets and sampling methods belong to this first approach. They can also
be combined: sampling is often used together with reduced input data sets.

The idea of reducing input data sets is to use the same programs from the original suite and decrease
the workload submitted by acting upon the arguments the binaries are invoked with. In addition to
evaluation time reduction, this approach may also allow to decrease the memory map size. One of the
pros of the method is that programs execute completely including its initialization phase, computing
phase and cleaning phase [8]. Among the cons is that different input sets could cause the program to
exercise different paths [5, 20, 25]. One of the most extended reduced input data sets was the MinneSPEC
[15]. This reduced workload was developed for the SPEC CPU2000 suite seeking equivalence of results
compared to the reference workload.

Sampling reduces workload by using segments of execution only. The selection of segments can be
done in a blindly manner by random or uniform collection or in a smart manner by representative analysis
based on statistical methods [27, 30]. A big problem to deal with is that machine state at the simulation
time starting point is not the same as it is upon real execution time [8].

1.3.2. Subsetting

The second approach to decrease the resources used by the benchmarks for research consists on
finding a smaller but representative subset of programs. The method lies in the hypothesis that the suite is
redundant. Redundancy in SPEC CPU benchmarks has been predicated since its first release. In the case
of SPEC89 suite it was outlined by Saavedra and Smith [21], and by Giladi and Ahituv [3]. For the SPEC
CPU95 suite it was reported in several works from Gustafson [7, 6]. Then, Vandierendonck and De
Bosschere and Luo et al. conclude that the SPEC CPU2000 suite is redundant [17, 24]. Finally, about the
SPEC CPU2006, McGhan ensures that the suite application programs are redundant [18] and so do other
later publications which apply statistical methods in their analysis reaching the same conclusion [14, 20].

Subsetting is a common technique that has been applied quite often. A high percentage of research
works make a partial use of SPEC CPU suite using not very convincing or not well-founded arguments

R. Rico, V. Escuder

4

sometimes [1, 2]. The most frequently used technique to find representative suite subsets is the
quantification of similarity based on statistical analysis [13, 30]. The problem is that results depend
strongly on both the selected characteristics for describing similarity and the statistical way to measure
similarity (namely “distance”) [17].

As far as we know, for the SPEC CPU2006 only Phansalkar et al. have proposed a representative
subset whose justification lies in statistical analysis [19].

2. SPEC CPUint2006 characterization

The matter of this technical report is confined to the integer benchmark suite (SPEC CPUint2006)
because this set is far more used for research purposes than the floating point set of the SPEC CPU suite.
Justifications of this fact are diverse: floating point code is highly branch predictable and is easier to
parallelize, integer programs are more suitable for general propose exploration and so on. Citron in [1]
makes a deeper analysis about the convenience of using the integer set.

Programs can be characterized using microarchitecture-dependent characteristics or
microarchitecture-independent characteristics. Cycles per instruction (CPI), cache miss-rate, branch
prediction accuracy or execution time belong to the first group whereas memory consumption, subroutine
call distribution, instruction mix, instruction level parallelism (ILP) or dynamic instruction count usually
are classified in the second group. But to be precise, we must make a few points arguing upon the so
claimed microarchitecture-independence of several figures from the second group.

- Some of these group characteristics highly rely upon the instruction set architecture (ISA) used
to compile the program and obtain the binary code and so, they cannot be considered just a pure
quality of the HLL (High-Level Language) programs in the suite. This is the case of instruction
mix and dynamic instruction count. Thus, for instance, both of these figures depend on whether
the instruction set is RISC or CISC.

- Some others characteristics, such as subroutine call distribution, are influenced by compiler
optimizations, operating system, and/or underlying hardware. Thus, the same program flow can
derive in different subroutine profiles caused by variations of individual instruction execution
time or latency. Also library functions, compiler optimizations, pointers size or the method used
to passing arguments, can change the results.

- The memory usage profile can be influenced by many factors affecting memory consumption:
compiler optimizations, size of pointers, memory pages allocation policy, page size and so on.

- In the case of ILP, the method used to quantify instruction level parallelism may jeopardize
results introducing microarchitecture-dependent information. So for instance, if the method relies
upon indirect measures like a ratio between executed instructions vs. cycles consumed, then
things like cache misses or number of functional units present in the hardware or simulator
configuration may contaminate the figures obtained for the ratio.

Despite the above stated conditions, we have selected dynamic instruction count, memory map size
and subroutine call distribution for our work. The reasons are explained next.

Dynamic instruction count, as stated above, depends on ISA. However, if the information we are
looking for is the relative computational load among benchmarks, this figure can be considered
microarchitecture-independent if obtained using the same hardware. In these conditions, dynamic
instruction count reveals the relative length of each benchmarks compared with the rest for a given
architecture or, in other words, which are the most CPU time consuming benchmarks. With very few
exceptions, the results obtained also stand for other instruction set architectures, as it is a relative figure.
One of these exceptions is produced when no 64-bit arithmetic operations are supported directly in
hardware and thus a single 64-bit arithmetic operation has to be implemented with multiple 32-bit
arithmetic operations. That is the case of 462.libquantum benchmark as has been reported in [28] which
causes a change in the relative proportion kept with the rest of benchmarks for this program.

We have also chosen memory usage profile because it provides a special and particular footprint of
each benchmark and workload. Additionally, memory consumption is a specific concern in some areas
like embedded system research where low level memory utilization profiles are a must and consequently,
it is useful to know how sensitive is the amount of memory consumed by each benchmark to its input data
sets.

Finally, subroutine call distribution is an efficient method to observe differences in the behavior of a
given program using different input data. This provides for characterization of a given benchmark against
the three SPEC workloads and beyond: a profile for each invocation with different inputs and arguments.
Again, gathering relative figures is appropriate to extrapolate among architectures where the same
differences, generally, still apply.

SPEC CPUint2006 characterization

 5

In the forthcoming sections we review the three selected characteristic for the integer programs of
the suite. The dynamic instruction count depends on the target instruction set architecture for which the
source code is compiled, as stated above. We have selected the x86-32 instruction set architecture for two
reasons: first because it is very extended and second because there is another work that reports dynamic
instruction counts for the reference workload using this ISA that we can use for contrasting results [20].

2.1. Executed instruction count in the SPEC CPUint2006

As stated in a previous section the size of the suite has grown along its different editions (SPEC89,
SPEC92, SPEC CPU95, SPEC CPU2000 and SPEC CPU2006) both in lines of code and in number of
modules.

Table 1 shows x86-32 executed instruction counts (dynamic instruction count) for the three
workloads (test, train and reference) of the dynamically linked SPEC CPUint2006 programs. Values
presented are from a Pentium M (1.5GHz, 1MB L2, 1GB) processor, running the Linux (Fedora Core 6,
kernel 2.6.x) operating system and using the gcc compiler (version 3.4.2). They were obtained using the
ptrace system call. The values for the reference workload are quite similar to the ones reported by
Phansalkar et al. [20] although they were taken in a Pentium D processor running Linux Suse.

In general, statically linked executables exhibit a lower number of instruction counts, about less than
1%.

Table 1. Dynamic instruction count for each program and workload in the integer suite SPEC CPUint2006.
 test - billions train - billions ref - billions

400.perlbench 0.6 125 2,018
401.bzip2 33.6 186 2,665
403.gcc 5.2 4 1,428
429.mcf 4.8 24 357
445.gobmk 61.4 290 1,814
456.hmmer 18.0 322 3,377
458.sjeng 16.4 521 2,507
462.libquantum 0.5 21 4,033
464.h264ref 99.4 567 4,384
471.omnetpp 2.3 610 745
473.astar 26.7 353 1,446
483.xalancbmk 0.4 337 1,410

For the cases when a test program is executed several times with different data input sets, the

instruction count shown is an accumulation for all the runs. However we must keep in mind that every
input set may be exercising a different part of the hardware.

The SPEC CPUint2006 executed instruction count for the reference workload are about a few
trillions (∝1012) whereas they were only about a few hundred billions (∝1011) in the SPEC CPUint2000.

As table 1 shows, there is no uniform increasing order of the number of instructions executed for the
test – train – reference sets for every benchmark program. Although in many cases we do observe an
increase of about one order of magnitude for each set like for instance in 401.bzip2, 456.hmmer or
464.h264ref, this is not always the case. Frequently the gap between test and train is more than two orders
of magnitude like in 400.perlbench, 483.xakancbmk or 471.omnetpp but sometimes there is not much
difference or even, like for 403.gcc it is a bit lower for the train workload. The train – reference relation
has fewer exceptions to the one-order-of-magnitude gap vs. reference (403.gcc, 462.libquantum,
471.omnetpp) but still they stand.

The lower figure in the test workload is in the order of billions (109) of instructions. Half of the
programs perform around this figure and the other half are around one order of magnitude more (1010).
The programs under the train workload execute around 1011 instructions with few exceptions and under
the reference workload totals are beyond 1012 executed instructions.

Annex I presents dynamic instruction counts for each program invocation and each workload. The
results allow a comparative insight among binaries and its different invocations (see “Annex I: dynamic
instruction count in the SPEC CPUint2006”; there we show figures instead of values since the
comparison of computational load is more important that the actual values). We comment on this
information in the final conclusions section.

R. Rico, V. Escuder

6

Obviously, the actual instruction counts may be different for other instruction sets. Ye et al. in [28]
make a performance comparison between x86-32 and x86-64 instruction sets for the SPEC CPUint2006
suite. For other instruction sets there are no studies published in the relevant literature as far as we know.

2.2. SPEC CPUint2006 memory usage

The committee selecting the programs of the suite established the limit of memory usage having in
mind 1GM main memory machines. For the SPEC CPU2000 the limit was 256MB. If we account for
some room for the operating system, the maximum memory size (memory footprint) used for the suite
SPEC CPU2006 is, approximately 900 MB.

For of RSS (Resident Set Size) or VSZ (Virtual Size), memory utilization profile is divided into two
large groups: in some cases it grows rapidly and then remains constant while in others it varies along
time. Henning presents this graphically in “SPEC CPU2006 Memory Footprint” [11] which, essentially
agrees with the graphics ones we obtained (see “Annex II: memory usage profiles in the SPEC
CPUint2006”). In addition to Henning’s work, we offer results of test and train workloads that can
slightly change some assumptions reported there (as we comment on the final conclusions section) since
we are more interested in the behavior across different workloads than in the evolution of an individual
invocation of a binary.

It is also worth mentioning that both analysis, Henning’s and ours, were made with dynamically
linked executables and it is possible that some smaller memory usage could be registered if statically
linked programs were used instead, especially for cases where included library sizes are large enough to
impact the amount of text memory used by the benchmark.

We obtained memory usage figures out from the information in the /proc pseudodirectory in a
machine running Linux (Fedora Core 6, kernel 2.6.x) whereas in Henning’s work they used the ps
command in a machine running Solaris under a SPARC processor. Annex II shows memory usage
profiles graphically for each benchmark invocation within each workload set. The X axis is not time
based; instead it presents the complete execution lifetime of the program with invoked with a given input
data set.

Although the SPEC organization made the new suite memory size usage to be larger than the
previous edition (and that seems to be the case in terms of RSS or VSZ), Gove uses an alternative metric
known as WSS (Working Set Size) that measures the memory size of the data area really used, thus
showing that the actual memory size is almost the same as the SPEC CPU2000 [4]. Only a small
percentage of time (less than 5%) the programs use over 256MB. An explanation for this may be that
applications from the suite make large memory reservations but then they use only reduced data area as
explained in the referred article.

2.3. SPEC CPUint2006 subroutine call distribution

Subroutine profiling is both a helpful performance tool and a precise characterization method.
Subroutine profiling is especially useful to find out if different invocations of the same program using
different inputs are similar or not. In the relevant literature we find the work of Weicker and Henning
reporting the subroutine profile for the reference workload [25]. In this technical report we present the
profiling results for each individual invocation of the benchmark program for each of the three workloads,
test, train, and, of course, reference.

It is understood that profiling results can vary from an experimental environment to another as they
are not completely independent from the hardware and the software on which the program is running as
we mentioned above. Even for the same instruction set and the same compiler, execution times for
individual instructions may differ among implementations of processors of the same family.

In fact, the experimental conditions used here are different from the work previously mentioned:
here the target instruction set is the x86, all binaries are 32 bits and the optimization level is –O2 whereas
the previous cited work reports profiling results using the SPARC instruction set and optimization level
–O. In any case, we think that these differences can contribute to a much deeper knowledge of binaries
and workloads.

To obtain the subroutine call profile in Linux we compiled the programs using the -pg option of the
gcc compiler, which causes the insertion of code for collecting information, and then we used the gprof
command to display the collected data of each benchmark. Annex III contains the subroutine call
distribution we obtained (see “Annex III: subroutine profiles in the SPEC CPUint2006”). In order to

SPEC CPUint2006 characterization

 7

facilitate a possible comparative analysis by the reader with the work of Weicker and Henning, we are
presenting information in the same fashion and using the same convention for long names that they used.
That is, each table list consists of the 20 highest-scoring subroutines only; routines called less than 1% of
the time are not reported and long names from C++ routines have been truncated too.

3. Conclusions

Several conclusions can be derived concerning dynamic instruction counts. The first observation is
that some programs from the SPEC CPUint2006 suite can produce extremely different dynamic counts
depending on the input data sets whereas others are more regular in this aspect. Thus we could say that
some of them are more elastic that others in computational terms. The fact is that it takes several
invocations of some programs to reach a similar computational work that others get with just a single
invocation. Among the elastic binaries, ranging up to four orders of magnitude in the number of executed
instructions with a single invocation are 458.sjeng, 462.libquantum, 471.omnetpp, and 483.xalancbmk.
On the other extreme for non-elastic binaries we have 400.perlbench, 403.gcc, 429.mcf, and 445.gobmk.

A final statement on instruction dynamic counts is that, comparing the figures obtained for the three
sets test, train, and reference workloads, we observe that the values obtained for each single invocation of
a program are more regular in the reference workload set than they are within the test and train
workloads.

We may also state some conclusions concerning memory usage. For the reference workload, the
results we present are virtually identical to the ones reported in Henning’s article [11] although we go into
more detail providing a graphic per-invocation of each benchmark while the named work consolidates all
the invocations in a single graph. The only exception is program 456.hmmer for which we measured
considerably lower numbers of memory usage for both invocations, although it is not excessively
surprising because it is well known that there are many factors affecting memory consumption (operating
system, compiler, etc.).

In the graphic samples for the test and train workloads we gather more information of the
benchmarks for different input data sets than in [11]. We can see, for example that 429.mcf, considered
stable together with 458.sjeng in [11] for the reference workload, actually has a variation over time in its
memory requirements, as it becomes apparent for the test and train workloads; also, it reaches different
top values which lead us to consider it as a non-stable benchmark (in memory usage), sensible to input
data set changes.

On the other hand, if we look at all the different graphs for 445.gobmk we can see how it uses
practically the same amount of memory for every invocation in every workload, reached short after it
begins executing. So, if there is room for some flexibility, we may consider that 445.gobmk is also stable
in addition to 458.sjeng across different workloads.

As for comparative maximums of memory consumed among workloads test, train and reference, if
we exclude 458.sjeng and 445.gobmk which remain constant independently of the input data set, as we
explained above, every benchmark program follows the tendency of increasing memory consumption,
that is: every program uses more memory in reference than it does in train; and more in train than it does
in test.

About lowest tops, all benchmark but 429.mcf and 448.sjeng have several invocations using less than
30MB in the test workload. The same stands for the train workload with additional exceptions of
471.omnetpp reaching close to the 45 MB top and 483.xalancbmk that goes beyond 120MB, which is
unusual because only in the reference workload set benchmarks often use more than 100MB.

If we look at the shapes of the memory profile graphs, we find that there is a large variety. But what
we are most interested is on learning whether or not this shape changes for different invocations of the
same program. In this sense, some maintain the memory profile shape for all invocations: 401.bzip2,
445.gobmk, 456.hmmer, 458.sjeng, 462.libquatum, 464.h264ref, 473.astar, 483.xalancbmk. Programs
429.mcf and 471.omnetpp maintain the memory profile shape in all invocations of test and train
workloads only. In contrast, programs 400.perlbench and 403.gcc show different shapes per invocation,
indicating possible different program flows.

Finally, analyzing subroutine call distributions leads us to the following conclusions: Programs
400.perlbench and 403.gcc exhibit quite different subroutine call distributions for each invocation, which
means that the program follows different execution flow paths depending on the inputs and explains the
observations made above about memory usage.

Program 456.hmmer has a peaky profile as it uses just one subroutine around 95% of time except in
the test workload where it uses it close to 70% of time. Program 429.mcf shows the same profile for test
and train workloads whereas it exercises other routines for the case of the reference workload, which

R. Rico, V. Escuder

8

provides an explanation for the memory behavior of this program. Programs 462.libquantum,
464.h264ref, and 473.astar exhibit the same subroutine call profile for every invocation and workload
always consuming 80%, 55%, and around 70% of total execution time respectively. The rest seven
programs do show more differences in the profile, calling approximately the same set of subroutines but
having different usage time depending on the actual invocation.

Consequently, we can say that the control flow of benchmark programs is typically rather
independent of workload, although we can find some exceptions where different input data sets cause the
program to exercise different control paths, and that the subroutine distribution may vary considerably
between invocations. For this reason we should be quite cautious when looking for workloads
representatives of the reference workload as Gove and Spracklen recommend [5].

4. Some recommendations for selecting a representative
workload

In this section we make a few considerations to those looking for alternatives for applying the

reference workload of the SPEC CPUint2006 suite in their experimentation fields because of its excessive
weight, in terms of dynamic instruction count, memory size or both. Despite using strategies as those
named in sect. 1.3 to find representatives, we then propose other alternatives for two types of scenario:
execution time constrained and memory size constrained environments.

4.1. Execution time constrained scenario

Fig. 11 in Annex I shows that even for the lightest workload (the test workload), the amount of
executed instructions is far too high for experimentation. It would be most convenient to get it down by
around two orders of magnitude, that is, reaching dynamic counts of approximately 100 million (108)
executed instructions.

For the so called elastic binaries, the suggestion is to look for a reduced input data set that achieves
the required reduced dynamic count. That requires to study the behavior of the execution time as a
function of input arguments together with the subroutine call distribution in order to determine a correct
representativeness.

In the case of non-elastic binaries, things depend on the typical computational load per invocation.
For instance, program 400.perlbench under the test workload is called several times with different inputs
and each invocation produces a very low dynamic count each. Something similar happens with
445.gobmk although it shows higher computational load (about one order of magnitude higher than
400.perlbench). In both cases, any one input data set from the test workload can be chosen to decrease the
executed instruction count, although using different argumentation to judge its representativeness. For
400.perlbench, the subroutine call distribution suggests that every invocation exercises different
execution flow paths and then it is reasonable to say that selecting one invocation or another would be as
much adequate as incomplete at the same time. In contrast, for each invocation of 445.gobmk the program
exercises similar execution flow paths, thus it can be considered a more stable choice.

The program for which we found most difficult to reduce execution time is 401.bzip2 because it has
a programmed fixed minimum size of 1 Mbyte buffer of data to compress and always executes three
cycles of compressing-uncompressing. This is performed before the actual invocation to the
compressing/decompressing logic, precisely to increase computation load. In this case, to reach a
dynamic count of around 108 executed instructions it is necessary to modify this pre-algorithmic source
code.

4.2. Memory size constrained scenario

As it has been stated before, all benchmarks but 429.mcf and 448.sjeng have several invocations
among test and train workloads that use less than 30MB. Some of them could be used for experimentation
when memory size constrains have to be observed. The representativeness of those invocations based on
its subroutine call distribution again depends on each binary.

SPEC CPUint2006 characterization

 9

In the case of 400.perlbench and 403.gcc they exhibit quite different subroutine call profiles for each
invocation, thus concluding that any one invocation can be considered adequate and incomplete at the
same time.

For 445.gobmk, from a memory usage profile point of view, every invocation is similar since it
consumes the same amount of memory. The same could be said for 448.sjeng although it has a
prohibitive amount of reserved memory that can not be decreased through input data set adaptation.

In general, a reduced input data set generating lower dynamic instruction counts may also produce a
lower memory consumption profile in the case of many benchmark programs, it is a statement worth to
study more carefully: a combined effect is not discardable.

Another recommendation is to use benchmark programs statically linked (instead of dynamically
linked) because they generally produce a lower memory usage profile, as well as a few less executed
instructions.

R. Rico, V. Escuder

10

References

[1] D. Citron. MisSPECulation: partial and misleading use of spec CPU2000 in computer architecture
conferences, in Proceedings of the 30th Annual International Symposium on Computer
Architecture, pp. 52-59, June 9-11, 2003.

[2] D. Citron, J. Hennessy, D. Patterson, and G. Sohi. The use and abuse of SPEC: An ISCA panel,
IEEE Micro, Vol. 23, No. 4, pp. 73-77, July/August 2003.

[3] R. Giladi and N. Ahituv. SPEC as a Performance Evaluation Measure, IEEE Computer, Vol. 28,
No. 8, pp. 33-42, August 1995.

[4] D. Gove. CPU2006 Working Set Size. Computer Architecture News, Vol. 35, No. 1, pp. 90-96,
March 2007.

[5] D. Gove and L. Spracklen. Evaluating the correspondence between training and reference
workloads in SPEC CPU2006, Computer Architecture News, Vol. 35, No. 1, pp. 122-129, March
2007.

[6] J. L. Gustafson and Q. O. Snell. HINT: A new way to measure computer performance, in
Proceedings of the 28th Annual Hawaii International Conference on System Sciences, Vol. 2:
Software Technology, IEEE Computer Society Press, Editors: H. El-Rewini and B. D. Shriver, pp.
392-401, January 1995.

[7] J. L. Gustafson and R. Todi. Conventional Benchmarks as a Sample of the Performance Spectrum,
in Performance Evaluation and Benchmarking with Realistic Applications, MIT Press, Editor: R.
Eigenmann, p. 304. January 2001.

[8] J. Haskins, K. Skadron, A. KleinOsowski, and D. J. Lilja. Techniques for Accurate, Accelerated
Processor Simulation: Analysis of Reduced Inputs and Sampling, Technical Report CS-2002-01,
University of Virginia, 2002.

[9] J. L. Henning. SPEC CPU2006 benchmark descriptions, Computer Architecture News, Vol. 34,
No. 4, pp. 1-17, September 2006.

[10] J. L. Henning. SPEC CPU Suite Growth: An Historical Perspective, Computer Architecture News,
Vol. 35, No. 1, pp. 65-68, March 2007.

[11] J. L. Henning. SPEC CPU2006 Memory Footprint, Computer Architecture News, Vol. 35, No. 1,
pp. 84-89, March 2007.

[12] J. L. Henning. Performance counters and development of SPEC CPU2006, Computer Architecture
News, Vol. 35, No. 1, pp. 118-121, March 2007.

[13] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling, Wiley-Interscience, 1991.

[14] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring Benchmark Similarity Using
Inherent Program Characteristic”. IEEE Transactions on Computers. Vol. 55, No. 6, June 2006.

[15] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A New SPEC Benchmark Workload for
Simulation-Based Computer Architecture Research, Computer Architecture Letters, Vol. 1, No. 1,
pp. 7-10, January 2002.

[16] W. Korn and M. S. Chang. SPEC CPU2006 sensitivity to memory page sizes, Computer
Architecture News, Vol. 35, No. 1, pp. 97-101, March 2007.

[17] Y. Luo, A. Joshi, A. Phansalkar, L. John, and J. Ghosh. Analyzing and improving clustering based
sampling for microprocessor simulation, in Proceedings of the 17th International Symposium on
Computer Architecture and High Performance Computing, pp. 193-200, October 2005.

[18] H. McGhan. SPEC CPU2006 Benchmark Suite, Microprocessor Report, October 2006.
[19] A. Phansalkar, A. Joshi and L. K. John. Subsetting the SPEC CPU2006 benchmark suite,

Computer Architecture News, Vol. 35, No. 1, pp. 69-76, March 2007.
[20] A. Phansalkar, A. Joshi, and L. K. John. Analysis of Redundancy and Application Balance in the

SPEC CPU2006 Benchmark Suite. In Proceedings of the International Symposium on Computer
Architecture (ISCA’07), 2007.

[21] R. H. Saavedra and A. J. Smith. Analysis of Benchmark Characteristics and Benchmark
Performance Prediction, Technical Report USC-CS-92-524, Computer Science Division,
University of California, Berkeley, September 1992.

[22] SPEC. http://www.spec.org/
[23] C. D. Spradling. SPEC CPU2006 benchmark tools, Computer Architecture News, Vol. 35, No. 1,

pp. 130-134, March 2007.
[24] H. Vandierendonck and K. De Bosschere. Many Benchmarks Stress the Same Bottlenecks, in

Proceedings of the Workshop on Computer Architecture Evaluation using Commercial Workloads
(CAECW-7), pp. 75-71, 2004.

[25] R. P. Weicker and J. L. Henning. Subroutine profiling results for the CPU2006 benchmarks,

SPEC CPUint2006 characterization

 11

Computer Architecture News, Vol. 35, No. 1, pp. 102-111, March 2007.
[26] M. Wong. C++ Benchmarks in SPEC CPU2006, Computer Architecture News, Vol. 35, No. 1, pp.

77-83, March 2007.
[27] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Accelerating

microarchitecture simulation via rigorous statistical sampling, in Proceedings of the International
Symposium on Computer Architecture, pp. 84-95, June 2003.

[28] D. Ye, J. Ray, C. Harle, and D. Kaeli. Performance Characterization of SPEC CPU2006 Integer
Benchmarks on x86-64 Architecture, in Proceeding of the IEEE International Symposium on
Workload Characterization, pp. 120-127, October 2006.

[29] D. Ye, J. Ray and D. Kaeli. Characterization of file I/O activity for SPEC CPU2006, Computer
Architecture News, Vol. 35, No. 1, pp. 112-117, March 2007.

[30] J.Yi, D. Lilja., Simulation of Computer Architectures: Simulators, Benchmarks, Methodologies,
and Recommendations, In IEEE Transactions on Computers, Vol. 55, No. 3, pp. 268-280, March
2006.

R. Rico, V. Escuder

12

Annex I: dynamic instruction count in the SPEC CPUint2006

Fig. 1. Dynamic instruction count for each program in the integer suite SPEC CPUint2006 for each workload (test, train and
reference). The instruction count axis is presented in logarithmic scale.

TEST workload

Fig. 2. Dynamic instruction count for each program invocation in the integer suite SPEC CPUint2006 for test workload. The
instruction count axis is presented in logarithmic scale.

SPEC CPUint2006 characterization

 13

TRAIN workload

Fig. 3. Dynamic instruction count for each program invocation in the integer suite SPEC CPUint2006 for train workload. The
instruction count axis is presented in logarithmic scale.

R. Rico, V. Escuder

14

REF workload

Fig. 4. Dynamic instruction count for each program invocation in the integer suite SPEC CPUint2006 for reference workload.
The instruction count axis is presented in logarithmic scale.

SPEC CPUint2006 characterization

 15

Annex II: memory usage profiles in the SPEC CPUint2006

TEST workload

400.perlbench -I. -I./lib attrs.pl

400.perlbench -I. -I./lib gv.pl

400.perlbench -I. -I./lib makerand.pl

400.perlbench -I. -I./lib pack.pl

400.perlbench -I. -I./lib redef.pl

400.perlbench -I. -I./lib ref.pl

400.perlbench -I. -I./lib regmesg.pl

400.perlbench -I. -I./lib test.pl

401.bzip2 input.program 5

401.bzip2 dryer.jpg 2

403.gcc cccp.i -o cccp.s

429.mcf inp.in

R. Rico, V. Escuder

16

445.gobmk --quiet --mode gtp < capture.tst

445.gobmk --quiet --mode gtp < connect.tst

445.gobmk --quiet --mode gtp < connect_rot.tst

445.gobmk --quiet --mode gtp < connection.tst

445.gobmk --quiet --mode gtp < connection_rot.tst

445.gobmk --quiet --mode gtp < cutstone.tst

445.gobmk --quiet --mode gtp < dniwog.tst

456.hmmer --fixed 0 --mean 325 --num 45000 --sd 200 --seed 0 bombesin.hmm

458.sjeng test.txt

462.libquantum 33 5

464.h264ref -d foreman_test_encoder_baseline.cfg

471.omnetpp omnetpp.ini

SPEC CPUint2006 characterization

 17

473.astar lake.cfg

483.xalancbmk -v test.xml xalanc.xsl

TRAIN workload

400.perlbench -I./lib diffmail.pl 2 550 15 24 23 100

400.perlbench -I./lib perfect.pl b 3

400.perlbench -I. -I./lib scrabbl.pl < scrabbl.in

400.perlbench -I./lib splitmail.pl 535 13 25 24 1091

400.perlbench -I. -I./lib suns.pl

401.bzip2 input.program 10

401.bzip2 byoudoin.jpg 5

401.bzip2 input.combined 80

403.gcc integrate.i -o integrate.s

429.mcf inp.in

R. Rico, V. Escuder

18

445.gobmk --quiet --mode gtp < arb.tst

445.gobmk --quiet --mode gtp < arend.tst

445.gobmk --quiet --mode gtp < arion.tst

445.gobmk --quiet --mode gtp < atari_atari.tst

445.gobmk --quiet --mode gtp < blunder.tst

445.gobmk --quiet --mode gtp < buzco.tst

445.gobmk --quiet --mode gtp < nicklas2.tst

445.gobmk --quiet --mode gtp < nicklas4.tst

456.hmmer --fixed 0 --mean 425 --num 85000 --sd 300 --seed 0 leng100.hmm

458.sjeng train.txt

462.libquantum 143 25

464.h264ref -d foreman_train_encoder_baseline.cfg

SPEC CPUint2006 characterization

 19

471.omnetpp omnetpp.ini

473.astar BigLakes1024.cfg

473.astar rivers1.cfg

483.xalancbmk -v allbooks.xml xalanc.xsl

REF workload

400.perlbench -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 1

400.perlbench -I./lib diffmail.pl 4 800 10 17 19 300

400.perlbench -I./lib splitmail.pl 1600 12 26 16 4500

401.bzip2 input.source 280

401.bzip2 chicken.jpg 30

401.bzip2 liberty.jpg 30

401.bzip2 input.program 280

401.bzip2 text.html 280

R. Rico, V. Escuder

20

401.bzip2 input.combined 200

403.gcc 166.i -o 166.s

403.gcc 200.i -o 200.s

403.gcc c-typeck.i -o c-typeck.s

403.gcc cp-decl.i -o cp-decl.s

403.gcc expr.i -o expr.s

403.gcc expr2.i -o expr2.s

403.gcc g23.i -o g23.s

403.gcc s04.i -o s04.s

403.gcc scilab.i -o scilab.s

429.mcf inp.in

445.gobmk --quiet --mode gtp < 13x13.tst

SPEC CPUint2006 characterization

 21

445.gobmk --quiet --mode gtp < nngs.tst

445.gobmk --quiet --mode gtp < score2.tst

445.gobmk --quiet --mode gtp < trevorc.tst

445.gobmk --quiet --mode gtp < trevord.tst

456.hmmer nph3.hmm swiss41

456.hmmer --fixed 0 --mean 500 --num 500000 --sd 350 --seed 0 retro.hmm

458.sjeng ref.txt

462.libquantum 1397 8

464.h264ref -d foreman_ref_encoder_baseline.cfg

464.h264ref -d foreman_ref_encoder_main.cfg

464.h264ref -d sss_encoder_main.cfg

471.omnetpp omnetpp.ini

R. Rico, V. Escuder

22

473.astar BigLakes2048.cfg

473.astar rivers.cfg

483.xalancbmk -v t5.xml xalanc.xsl

SPEC CPUint2006 characterization

 23

Annex III: subroutine profiles in the SPEC CPUint2006

TEST workload

400.perlbench

Invocation: 400-perlbench-attrs.pl
% time name
22.22 Perl_yylex
11.11 Perl_sv_upgrade
11.11 Perl_sv_grow
11.11 S_hv_fetch_common
11.11 Perl_av_fetch
11.11 Perl_pad_findmy
11.11 Perl_sv_setpv
11.11 Perl_yyparse

Invocation: 400-perlbench-gv.pl
% time name
14.29 Perl_grok_hex
14.29 Perl_newSVOP
14.29 Perl_sv_gets
14.29 S_scan_word
14.29 Perl_peep
14.29 Perl_yyparse
14.29 perl_parse

Invocation: 400-perlbench-makerand.pl
% time name
10.87 Perl_pp_modulo
8.15 Perl_pp_padsv
7.61 Perl_pp_predec
7.07 Perl_pp_rand
6.52 Perl_pp_gt
5.98 Perl_pp_const
5.43 Perl_runops_standard
4.89 Perl_pp_int
4.35 Perl_sv_setuv
4.35 Perl_sv_setsv_flags
4.35 spec_rand
3.80 Perl_pp_and
3.80 Perl_pp_sassign
3.26 Perl_pp_nextstate
3.26 Perl_cast_uv
3.26 Perl_pp_gvsv
2.17 Perl_sv_2iv
2.17 S_dopoptoloop
2.17 Perl_cast_iv
1.63 Perl_sv_setiv

Invocation: 400-perlbench-pack.pl
% time name

5.56 Perl_yyparse
4.32 Perl_pp_padsv
3.70 Perl_sv_setsv_flags
3.70 S_hv_fetch_common
3.70 Perl_pp_entersub
3.70 Perl_gv_fetchpv
3.70 S_unpack_rec
3.09 Perl_sv_clear
3.09 Perl_yylex
3.09 uiv_2buf
2.47 Perl_sv_upgrade
2.47 Perl_pp_return
2.47 Perl_sv_gets
1.85 Perl_sv_catpvn_flags
1.85 Perl_pp_nextstate
1.85 Perl_pp_pushmark
1.85 Perl_leave_scope
1.85 Perl_pp_concat
1.85 S_skipspace
1.85 Perl_runops_standard

Invocation: 400-perlbench-redef.pl
% time name
50.00 Perl_yyparse
25.00 Perl_yylex
25.00 Perl_sv_gets

Invocation: 400-perlbench-ref.pl
% time name
16.67 Perl_yylex
16.67 Perl_newSVpv
16.67 Perl_keyword
16.67 Perl_pp_pushmark
16.67 Perl_yyparse
16.67 perl_destruct

Invocation: 400-perlbench-regmesg.pl
% time name
25.00 PerlIOBuf_get_cnt
25.00 Perl_leave_scope
25.00 Perl_pp_regcreset
25.00 Perl_pp_cond_expr

Invocation: 400-perlbench-test.pl
% time name
11.11 Perl_pp_nextstate
11.11 Perl_yylex
11.11 Perl_sv_setpvn
11.11 Perl_leave_scope
11.11 Perl_sv_setiv
11.11 PerlIOBuf_write
11.11 uiv_2buf
11.11 Perl_pp_waitpid
11.11 Perl_sv_inc

401.bzip2

Invocation: 401-bzip2-dryer-2
% time name
67.37 fallbackSort
18.36 mainGtU
4.15 BZ2_compressBlock
3.49 BZ2_bzDecompress
3.14 BZ2_decompress
2.57 BZ2_blockSort

Invocation: 401-bzip2-input.program-5
% time name
35.50 BZ2_blockSort
19.17 BZ2_compressBlock
18.74 BZ2_decompress
11.21 BZ2_bzDecompress
8.96 mainGtU
3.61 handle_compress
1.20 bsW

403.gcc

Invocation: 403-gcc-test
% time name

3.22 propagate_one_insn
2.65 approx_reg_cost
2.53 for_each_rtx
2.38 cse_insn
2.14 ggc_mark_rtx_children_1
1.99 init_alias_analysis
1.90 mark_set_1
1.87 ggc_set_mark
1.75 constrain_operands
1.60 ggc_alloc
1.51 bitmap_operation
1.42 reg_scan_mark_refs
1.33 bitmap_set_bit
1.18 canon_reg
1.11 fold_rtx
1.11 record_reg_classes
1.08 ggc_mark_rtx_children
1.05 bitmap_bit_p
1.05 ggc_mark_trees

429.mcf

Invocation: 429-mcf-inp.in
% time name
67.47 primal_bea_mpp
11.39 price_out_impl
6.96 refresh_potential
3.22 bea_is_dual_infeasible
2.62 sort_basket
2.24 insert_new_arc
2.05 update_tree
1.09 primal_iminus

R. Rico, V. Escuder

24

445.gobmk

Invocation: 445-gobmk-capture.tst
% time name
73.04 hashtable_clear
4.41 new_position
1.96 fastlib
1.96 propagate_string
1.96 do_play_move
1.72 is_self_atari
1.47 do_get_read_result
1.47 propose_edge_moves
1.23 order_moves
1.23 update_liberties

Invocation: 445-gobmk-connect.tst
% time name
36.58 hashtable_clear
9.28 compute_connection_distances
8.78 do_play_move
3.96 fastlib
3.41 incremental_order_moves
3.07 assimilate_string
3.01 order_moves
2.61 popgo
2.40 new_position
1.72 approxlib
1.63 is_suicide
1.29 do_trymove
1.26 remove_liberty
1.20 simple_ladder_attack
1.11 is_self_atari
1.07 do_attack
1.01 update_liberties
1.01 do_find_defense

Invocation: 445-gobmk-connect_rot.tst
% time name
57.14 hashtable_clear
7.14 do_play_move
4.29 compute_connection_distances
2.86 order_moves
2.14 count_common_libs
2.14 do_get_read_result
2.14 propagate_string
2.14 do_find_defense
1.43 remove_liberty
1.43 is_suicide
1.43 incremental_order_moves
1.43 assimilate_string
1.43 edge_block_moves
1.43 store_persistent_reading_cache

Invocation: 445-gobmk-connection.tst
% time name
15.15 do_play_move
11.44 compute_connection_distances
6.81 fastlib
5.29 incremental_order_moves
4.99 hashtable_clear
4.82 order_moves
4.04 popgo
3.85 assimilate_string
2.52 approxlib
2.26 hashtable_search
2.10 is_self_atari
2.05 do_find_defense
1.96 is_suicide
1.95 update_liberties
1.89 remove_liberty
1.80 do_attack
1.68 do_trymove
1.63 chainlinks2
1.54 do_get_read_result
1.46 count_common_libs
1.05 remove_neighbor
1.01 komaster_trymove

Invocation: 445-gobmk-connection_rot.tst
% time name
42.86 hashtable_clear
8.44 do_play_move
7.79 compute_connection_distances
3.90 remove_liberty
3.90 fastlib
3.90 incremental_order_moves
3.25 store_persistent_reading_cache
2.60 order_moves
1.95 popgo
1.95 count_common_libs

1.30 is_suicide
1.30 do_trymove
1.30 chainlinks2
1.30 assimilate_string
1.30 simple_ladder_defend
1.30 update_liberties
1.30 do_find_defense
1.30 find_connection_moves

Invocation: 445-gobmk-cutstone.tst
% time name
23.93 hashtable_clear
8.02 do_play_move
5.43 fastlib
5.30 order_moves
4.66 incremental_order_moves
4.53 hashtable_search
4.14 popgo
4.14 do_find_defense
3.62 do_attack
3.49 approxlib
3.49 is_self_atari
2.72 propose_edge_moves
2.20 do_get_read_result
2.20 assimilate_string
1.94 update_liberties
1.55 chainlinks2
1.42 count_common_libs
1.16 do_find_superstring
1.03 komaster_trymove
1.03 edge_clamp_moves
1.03 attack3

Invocation: 445-gobmk-dniwog.tst
% time name
10.75 dfa_matchpat_loop
9.01 do_play_move
5.67 fastlib
4.72 order_moves
4.42 incremental_order_moves
3.42 hashtable_search
3.26 assimilate_string
3.12 accumulate_influence
2.81 popgo
2.70 do_find_defense
2.69 compute_primary_domains
2.55 get_next_move_from_list
2.41 approxlib
2.40 compute_connection_distances
2.32 do_attack
1.93 is_self_atari
1.79 chainlinks2
1.74 do_get_read_result
1.48 count_common_libs
1.37 matchpat_loop

456.hmmer

Invocation: 456-hmmer-bombesin
% time name
69.20 P7Viterbi
14.50 sre_random
13.03 FChoose
1.89 SymbolIndex

458.sjeng

Invocation: 458-sjeng-test
% time name
15.63 std_eval
9.02 clear_tt
8.24 setup_attackers
7.61 gen
5.31 remove_one
4.77 order_moves
4.41 search
3.99 QProbeTT
3.63 push_slidE
3.51 rook_mobility
3.39 is_attacked
3.16 Pawn
2.97 ProbeTT
2.95 make
2.65 checkECache
2.11 unmake
2.08 check_legal
1.73 bishop_mobility
1.65 see
1.57 Rook

SPEC CPUint2006 characterization

 25

462.libquantum

Invocation: 462-libquantum-33-5
% time name
55.14 quantum_toffoli
15.14 quantum_cnot
11.35 quantum_sigma_x
5.95 quantum_state_collapse
5.41 quantum_swaptheleads
4.32 __umoddi3

464.h264ref

Invocation: 464-h264ref-foreman-test
% time name
25.03 SetupFastFullPelSearch
20.36 FastFullPelBlockMotionSearch
11.83 SATD
6.74 SubPelBlockMotionSearch
6.60 FastPelY_14
4.13 dct_luma
3.58 SetupLargerBlocks
3.23 UMVLine16Y_11
2.47 FastLine16Y_11
1.13 BlockMotionSearch
1.07 getNonAffNeighbour
1.07 UMVPelY_14
1.07 writeCoeff4x4_CAVLC

471.omnetpp

Invocation: 471-omnetpp-test
% time Name

6.59 cObject::setOwner
5.74 cMessageHeap::insert
5.42 cModule::findGate
4.89 TCmdenvApp::simulate
3.24 EtherMAC::printState
3.08 cMessageHeap::shiftup
2.87 EtherMAC::processReceivedDataFrame
2.34 cSimpleModule::sendDelayed
2.23 EtherMAC::handleMessage
2.23 EtherMAC::handleEndTxPeriod
2.02 cSimulation::doOneEvent
2.02 cGate::deliver
1.70 cMessageHeap::getFirst
1.54 MACAddress::equals
1.49 cSimpleModule::scheduleAt

1.38 EtherLLC::processPacketFromHigherLayer
1.28 cSimulation::selectNextModule
1.28 cMessage::operator=
1.17 cObject::~cObject
1.17 cMessage::cMessage

473.astar

Invocation: 473-astar-lake
% time name
45.95 wayobj::makebound2
18.30 way2obj::releasepoint
15.44 regwayobj::makebound2
4.84 regmngobj::getregfillnum
4.22 regwayobj::isaddtobound
3.00 way2obj::addtobound
2.11 way2obj::releasebound
1.70 regwayobj::addtobound
1.40 way2obj::isaddtobound

483.xalan

Invocation: 483-xalan-test
% time name
13.41 __gnu_cxx::__normal_iterator
5.36 xalanc_1_8::ReusableArenaBlock::ownsObject
3.07 xalanc_1_8::FunctionSubstring::execute
2.68 xalanc_1_8::DoubleSupport::round
2.30 xalanc_1_8::XalanReferenceCountedObject::addRefer

ence
2.30 xalanc_1_8::XalanReferenceCountedObject::removeRe

ference
2.30 xalanc_1_8::ReusableArenaBlock::blockAvailable
2.30 xalanc_1_8::VariablesStack::findEntry
2.30 xalanc_1_8::XStringCachedAllocator::destroy
1.92 xalanc_1_8::XalanDOMString::equals
1.92 xalanc_1_8::XPath::executeMore
1.92 xalanc_1_8::ElemTemplateElement::executeChildren
1.92 xalanc_1_8::StylesheetExecutionContextDefault::ge

tParams
1.53 xalanc_1_8::XalanBitmap::isSet
1.53 xalanc_1_8::XalanDOMString::equals
1.53 xalanc_1_8::VariablesStack::push
1.53 xalanc_1_8::XPath::runFunction
1.53 xalanc_1_8::ElemChoose::execute
1.15 xalanc_1_8::VariablesStack::StackEntry
1.15 xalanc_1_8::XPath::variable

TRAIN workload

400.perlbench

Invocation: 400-perlbench-diffmail.pl
% time name
18.83 S_regmatch
5.60 Perl_sv_setsv_flags
4.67 Perl_regexec_flags
4.06 Perl_pp_padsv
3.26 S_hv_fetch_common
3.00 Perl_leave_scope
2.80 Perl_pp_nextstate
2.71 Perl_sv_clear
2.44 Perl_sv_upgrade
2.28 S_regrepeat
1.98 Perl_pp_entersub
1.92 Perl_sv_setpvn
1.91 Perl_pp_helem
1.70 S_regtry
1.57 Perl_sv_eq
1.49 Perl_pp_and
1.46 Perl_runops_standard
1.30 Perl_sv_free
1.18 S_find_byclass
1.17 Perl_save_alloc

Invocation: 400-perlbench-perfect.pl
% time name

9.89 S_hv_fetch_common
6.19 Perl_pp_padsv
5.03 Perl_sv_setsv_flags
3.64 Perl_pp_entersub
3.39 Perl_pp_nextstate
3.14 Perl_leave_scope
2.82 Perl_gv_fetchpv
2.65 Perl_pp_and

2.64 Perl_pp_rv2av
2.55 Perl_sv_clear
2.35 Perl_pp_helem
2.31 Perl_runops_standard
1.96 Perl_sv_upgrade
1.93 S_regmatch
1.70 Perl_pp_aassign
1.64 Perl_pp_pushmark
1.63 Perl_amagic_call
1.54 Perl_pp_ref
1.42 S_method_common
1.37 Perl_pp_aelemfast

Invocation: 400-perlbench-scrabbl.pl
% time name

9.05 Perl_pp_gvsv
7.82 Perl_sv_setsv_flags
4.82 Perl_sv_eq
4.59 Perl_pp_rv2av
4.32 Perl_runops_standard
3.66 Perl_sv_clear
3.62 Perl_pp_gv
3.33 Perl_pp_nextstate
3.33 Perl_pp_aelem
3.28 Perl_pp_and
3.14 S_hv_fetch_common
2.99 Perl_leave_scope
2.25 Perl_sv_upgrade
2.12 Perl_pp_entersub
2.02 Perl_pp_enter
2.00 Perl_pp_aassign
1.92 Perl_pp_preinc
1.84 Perl_sv_free
1.77 Perl_pp_next
1.76 Perl_pp_const

R. Rico, V. Escuder

26

Invocation: 400-perlbench-splitmail.pl
% time name
46.05 S_regmatch
3.51 S_reginclass
2.43 S_find_byclass
2.42 Perl_leave_scope
2.39 S_regtry
2.36 Perl_pp_padsv
2.14 Perl_sv_setsv_flags
2.00 Perl_pp_match
1.93 Perl_pp_gvsv
1.62 Perl_pp_nextstate
1.51 S_hv_fetch_common
1.45 Perl_pp_and
1.42 Perl_save_alloc
1.40 Perl_pp_aelem
1.29 Perl_regexec_flags
1.17 Perl_pp_helem
1.15 Perl_runops_standard

Invocation: 400-perlbench-suns.pl
% time name
14.08 Perl_sv_cmp
8.00 S_mergesortsv
7.29 S_hv_fetch_common
4.76 Perl_regexec_flags
4.05 S_regmatch
3.34 Perl_sv_setsv_flags
2.74 Perl_pp_split
2.63 Perl_sv_setpvn
2.53 Perl_pp_gvsv
2.33 S_regtry
2.33 S_hsplit
2.23 Perl_runops_standard
2.03 Perl_pp_rv2av
1.82 Perl_sv_clear
1.72 Perl_sv_upgrade
1.42 Perl_sv_catpvn_flags
1.42 Perl_free_tmps
1.32 Perl_pp_helem
1.22 Perl_sv_catsv_flags
1.22 Perl_pp_pushmark

401.bzip2

Invocation: 401-bzip2-byoudoin-5
% time name
22.49 BZ2_compressBlock
20.19 BZ2_blockSort
15.87 mainGtU
14.23 BZ2_decompress
12.48 BZ2_bzDecompress
11.70 fallbackSort
1.92 handle_compress

Invocation: 401-bzip2-input.combined-80
% time name
37.28 BZ2_blockSort
14.12 mainGtU
12.76 BZ2_bzDecompress
10.99 BZ2_compressBlock
10.94 BZ2_decompress
9.50 fallbackSort
2.81 handle_compress

Invocation: 401-bzip2-input.program-10
% time name
35.70 BZ2_blockSort
19.32 BZ2_compressBlock
18.67 BZ2_decompress
11.51 BZ2_bzDecompress
8.47 mainGtU
3.77 handle_compress
1.14 bsW

403.gcc

Invocation: 403-gcc-integrate
% time name

5.46 init_alias_analysis
3.01 bitmap_operation
2.77 propagate_one_insn
2.58 reg_is_remote_constant_p
2.20 ggc_mark_rtx_children_1
2.03 approx_reg_cost
1.91 note_stores
1.70 for_each_rtx
1.66 cse_insn

1.41 ggc_set_mark
1.38 sbitmap_vector_alloc
1.31 mark_set_1
1.29 reg_scan
1.26 find_basic_blocks
1.20 reg_scan_mark_refs
1.16 bitmap_set_bit
1.12 propagate_block
1.12 mark_used_regs
1.09 find_reg_note
1.03 convert_to_ssa

429.mcf

Invocation: 429-mcf-inp.in
% time name
56.91 price_out_impl
27.45 primal_bea_mpp
6.12 refresh_potential
4.38 replace_weaker_arc
1.32 update_tree

445.gobmk

Invocation: 445-gobmk-arb.tst
% time name

8.68 do_play_move
6.27 fastlib
5.52 order_moves
5.12 incremental_order_moves
4.97 dfa_matchpat_loop
3.71 assimilate_string
3.48 approxlib
3.44 do_find_defense
3.24 hashtable_search
3.09 popgo
2.96 is_self_atari
2.88 matchpat_loop
2.77 hashtable_clear
2.60 compute_connection_distances
2.59 do_attack
2.41 update_liberties
2.38 chainlinks2
2.24 do_get_read_result
1.96 do_find_superstring
1.80 count_common_libs

Invocation: 445-gobmk-arend.tst
% time name
12.76 do_play_move
6.66 fastlib
6.62 compute_connection_distances
5.07 incremental_order_moves
5.01 order_moves
4.10 dfa_matchpat_loop
3.73 popgo
3.65 assimilate_string
2.93 hashtable_search
2.81 approxlib
2.33 get_next_move_from_list
2.24 do_find_defense
2.10 is_self_atari
2.06 accumulate_influence
1.91 do_attack
1.86 chainlinks2
1.70 do_get_read_result
1.63 remove_liberty
1.53 is_suicide
1.51 count_common_libs

Invocation: 445-gobmk-arion.tst
% time name

9.87 do_play_move
6.43 fastlib
5.28 order_moves
4.99 dfa_matchpat_loop
4.86 compute_connection_distances
4.77 incremental_order_moves
3.89 hashtable_search
3.32 assimilate_string
3.11 approxlib
3.04 popgo
2.98 do_find_defense
2.94 accumulate_influence
2.40 hashtable_partially_clear
2.38 do_attack
2.24 is_self_atari
2.22 chainlinks2

SPEC CPUint2006 characterization

 27

2.00 do_get_read_result
1.86 update_liberties
1.82 matchpat_loop
1.71 count_common_libs

Invocation: 445-gobmk-atari.tst
% time name

8.36 do_play_move
6.16 fastlib
5.67 hashtable_clear
5.07 dfa_matchpat_loop
4.60 order_moves
4.58 incremental_order_moves
3.80 matchpat_loop
3.71 assimilate_string
3.51 hashtable_search
3.02 do_attack
3.00 do_find_defense
2.91 approxlib
2.91 is_self_atari
2.91 popgo
2.49 do_get_read_result
2.22 update_liberties
2.13 chainlinks2
1.73 propose_edge_moves
1.62 accumulate_influence
1.58 count_common_libs

Invocation: 445-gobmk-blunder.tst
% time name
16.44 hashtable_clear
9.48 matchpat_loop
6.38 do_play_move
4.68 fastlib
3.66 order_moves
3.51 incremental_order_moves
3.48 dfa_matchpat_loop
2.78 assimilate_string
2.72 do_find_defense
2.66 popgo
2.40 do_attack
2.31 accumulate_influence
2.17 do_get_read_result
2.14 approxlib
2.14 compute_connection_distances
2.11 hashtable_search
1.99 is_self_atari
1.70 update_liberties
1.58 store_persistent_reading_cache
1.35 count_common_libs

Invocation: 445-gobmk-buzco.tst
% time name

9.86 do_play_move
6.80 fastlib
5.49 order_moves
5.30 incremental_order_moves
4.55 dfa_matchpat_loop
3.97 hashtable_search
3.43 assimilate_string
3.17 popgo
3.16 approxlib
3.08 accumulate_influence
2.75 do_find_defense
2.64 compute_connection_distances
2.62 do_attack
2.33 chainlinks2
2.22 is_self_atari
2.21 hashtable_partially_clear
2.17 do_get_read_result
1.79 update_liberties
1.67 count_common_libs
1.45 matchpat_loop

Invocation: 445-gobmk-nicklas2.tst
% time name

7.90 do_play_move
6.35 fastlib
5.53 order_moves
5.47 incremental_order_moves
4.29 hashtable_clear
4.22 hashtable_search
3.87 approxlib
3.61 assimilate_string
3.55 do_find_defense
3.30 do_attack
3.19 dfa_matchpat_loop
2.97 popgo
2.84 do_get_read_result
2.76 is_self_atari
2.35 chainlinks2

2.33 update_liberties
2.27 propose_edge_moves
1.96 count_common_libs
1.53 do_find_superstring
1.49 get_next_move_from_list

Invocation: 445-gobmk-nicklas4.tst
% time name

9.84 do_play_move
9.29 dfa_matchpat_loop
6.23 fastlib
4.79 order_moves
4.61 incremental_order_moves
4.05 compute_connection_distances
3.55 hashtable_search
3.42 assimilate_string
3.07 popgo
2.63 approxlib
2.57 do_find_defense
2.21 do_attack
2.02 is_self_atari
1.94 do_get_read_result
1.87 chainlinks2
1.80 matchpat_loop
1.79 accumulate_influence
1.76 get_next_move_from_list
1.68 compute_primary_domains
1.54 update_liberties

456.hmmer

Invocation: 456-hmmer-leng100
% time name
95.75 P7Viterbi
1.94 sre_random
1.74 FChoose

458.sjeng

Invocation: 458-sjeng-train
% time name

20.1 std_eval
8.04 gen
6.52 setup_attackers
5.15 QProbeTT
5.01 remove_one
4.32 search
4.23 ProbeTT
4.12 Pawn
4.08 order_moves
3.60 checkECache
3.59 push_slidE
3.58 rook_mobility
3.20 bishop_mobility
3.04 is_attacked
2.64 make
1.98 Rook
1.96 unmake
1.67 check_legal
1.42 see
1.39 Bishop

462.libquantum

Invocation: 462-libquantum-143-25
% time name
59.15 quantum_toffoli
15.33 quantum_sigma_x
13.84 quantum_cnot
3.95 quantum_swaptheleads
3.79 __umoddi3
2.54 quantum_state_collapse

464.h264ref

Invocation: 464-h264ref-foreman-train
% time name
25.96 SetupFastFullPelSearch
21.54 FastFullPelBlockMotionSearch
11.90 SATD
6.84 FastPelY_14
6.67 SubPelBlockMotionSearch
3.68 SetupLargerBlocks
3.54 dct_luma
3.23 UMVLine16Y_11
2.58 FastLine16Y_11
1.25 BlockMotionSearch
1.20 UMVPelY_14
1.00 getNonAffNeighbour

R. Rico, V. Escuder

28

471.omnetpp

Invocation: 471-omnetpp-train
% time name
21.92 cMessageHeap::shiftup
8.87 cMessageHeap::insert
4.76 cObject::setOwner
4.30 cModule::findGate
3.52 cGate::deliver
3.20 TCmdenvApp::simulate
2.82 EtherMAC::printState
1.94 opp_strdup
1.86 EtherMAC::processMsgFromNetwork
1.70 EtherMAC::handleMessage
1.52 EtherBus::handleMessage
1.50 cSimpleModule::scheduleAt
1.46 cMessage::operator=
1.42 EtherMAC::processReceivedDataFrame
1.39 cSimulation::doOneEvent
1.36 cSimulation::selectNextModule
1.29 cObject::~cObject
1.23 cArray::get
1.21 cMessageHeap::getFirst
1.17 TOmnetApp::checkTimeLimits

473.astar

Invocation: 473-astar-Biglakes
% time name
35.27 wayobj::makebound2
15.23 way2obj::releasepoint
12.17 regwayobj::isaddtobound
11.86 regwayobj::makebound2
10.85 regmngobj::getregfillnum
2.88 way2obj::releasebound
2.42 way2obj::isaddtobound
2.19 way2obj::addtobound
1.69 regboundobj::makebound2
1.18 regmngobj::defineneighborhood1

Invocation: 473-astar-rivers1
% time name
39.97 wayobj::makebound2
23.57 way2obj::releasepoint
11.11 regwayobj::makebound2
6.30 regwayobj::isaddtobound
5.73 regmngobj::getregfillnum
4.66 way2obj::releasebound
3.60 way2obj::addtobound
2.82 way2obj::isaddtobound

483.xalan

Invocation: 483-xalan-train
% time name

4.41 xalanc_1_8::VariablesStack::findEntry
3.52 xalanc_1_8::FunctionSubstring::execute
3.37 xalanc_1_8::XPath::executeMore
3.23 xalanc_1_8::XalanDOMString::equals
3.04 xalanc_1_8::XalanDOMString::equals
2.90 xalanc_1_8::XalanReferenceCountedObject::addRefer

ence
2.53 xalanc_1_8::XalanReferenceCountedObject::removeRe

ference
2.47 xalanc_1_8::XalanBitmap::isSet
2.41 xalanc_1_8::DoubleSupport::round
2.30 xalanc_1_8::XPath::runFunction
2.13 xalanc_1_8::XObjectFactoryDefault::doReturnObject
2.02 __gnu_cxx::__normal_iterator
1.66 xalanc_1_8::StylesheetExecutionContextDefault::ge

tParams
1.43 __gnu_cxx::__normal_iterator
1.43 xalanc_1_8::ElemTemplateElement::executeChildren
1.25 xalanc_1_8::VariablesStack::findXObject
1.24 xalanc_1_8::XStringCachedAllocator::createString
1.21 xalanc_1_8::XPath::variable
1.18 xalanc_1_8::ReusableArenaBlock::allocateBlock()
1.16 xalanc_1_8::XalanDOMString::erase

REF workload

400.perlbench

Invocation: 400-perlbench-checkspam.pl
% time name
30.23 S_regmatch
12.33 S_find_byclass
4.99 S_regtry
3.78 S_hv_fetch_common
2.81 Perl_pp_entersub
2.70 Perl_leave_scope
2.62 Perl_pp_padsv
2.45 Perl_pp_helem
2.22 Perl_pp_nextstate
2.18 Perl_sv_setsv_flags
1.77 Perl_pp_rv2hv
1.52 Perl_pp_match
1.45 Perl_save_alloc
1.22 Perl_pp_and
1.13 Perl_regexec_flags
1.01 Perl_fbm_instr
1.01 S_share_hek_flags

Invocation: 400-perlbench-diffmail.pl
% time name
17.56 S_regmatch
6.02 Perl_sv_setsv_flags
5.75 Perl_regexec_flags
4.22 Perl_sv_clear
4.06 Perl_sv_upgrade
2.91 Perl_pp_padsv
2.67 Perl_leave_scope
2.54 Perl_sv_free
2.51 S_regtry
2.45 S_hv_fetch_common
2.32 Perl_sv_grow
2.01 S_regrepeat
2.00 Perl_pp_nextstate
1.97 Perl_sv_setpvn
1.86 Perl_pp_split
1.66 Perl_pp_entersub
1.62 Perl_free_tmps
1.48 Perl_pp_helem
1.40 S_find_byclass
1.36 Perl_save_alloc

Invocation: 400-perlbench-splitmail.pl
% time name
53.98 S_regmatch
4.19 S_reginclass
2.95 S_regtry
2.87 S_find_byclass
2.47 Perl_leave_scope
1.74 Perl_save_alloc
1.65 Perl_pp_gvsv
1.58 Perl_pp_match
1.48 Perl_sv_setsv_flags
1.48 Perl_pp_padsv
1.40 Perl_pp_aelem
1.16 Perl_regexec_flags
1.15 S_hv_fetch_common
1.14 Perl_pp_and
1.11 Perl_pp_nextstate
1.07 MD5Transform

401.bzip2

Invocation: 401-bzip2-chicken-30
% time name
43.84 fallbackSort
14.26 BZ2_compressBlock
12.75 mainGtU
10.46 BZ2_blockSort
8.93 BZ2_decompress
7.82 BZ2_bzDecompress
1.21 handle_compress

Invocation: 401-bzip2-input.combined-200
% time name
37.90 BZ2_blockSort
13.82 mainGtU
13.12 BZ2_bzDecompress
11.26 BZ2_decompress
11.14 BZ2_compressBlock
8.57 fallbackSort
2.51 handle_compress

SPEC CPUint2006 characterization

 29

Invocation: 401-bzip2-input.program-280
% time name
35.91 BZ2_blockSort
19.69 BZ2_compressBlock
18.98 BZ2_decompress
10.9 BZ2_bzDecompress
8.17 mainGtU
3.60 handle_compress
1.21 bsW

Invocation: 401-bzip2-input.source-280
% time name
43.32 BZ2_blockSort
14.26 BZ2_bzDecompress
14.17 mainGtU
11.81 BZ2_decompress
10.91 BZ2_compressBlock
2.77 handle_compress

Invocation: 401-bzip2-liberty-30
% time name
63.36 fallbackSort
20.50 mainGtU
4.69 BZ2_compressBlock
4.16 BZ2_bzDecompress
3.77 BZ2_decompress
2.59 BZ2_blockSort

Invocation: 401-bzip2-text-280
% time name
39.13 BZ2_blockSort
38.02 mainGtU
7.30 BZ2_bzDecompress
6.58 BZ2_decompress
5.60 BZ2_compressBlock
2.17 handle_compress

403.gcc

Invocation: 403-gcc-166
% time name
27.08 reg_is_remote_constant_p
7.14 compute_transp
5.85 bitmap_operation
5.81 clear_table
2.96 single_set_2
2.87 sbitmap_union_of_diff
1.88 delete_null_pointer_checks
1.65 init_alias_analysis
1.50 loop_regs_scan
1.36 sbitmap_vector_alloc
1.25 splay_tree_splay_helper
1.08 sbitmap_intersection_of_preds
1.01 canon_rtx

Invocation: 403-gcc-200
% time name

5.64 bitmap_operation
5.46 ggc_mark_rtx_children_1
4.10 ggc_set_mark
4.03 reg_is_remote_constant_p
3.64 init_alias_analysis
2.29 loop_regs_scan
2.20 ggc_mark_rtx_children
1.87 note_stores
1.62 try_combine
1.46 propagate_one_insn
1.37 cse_insn
1.37 compute_transp
1.30 ggc_pop_context
1.26 reg_scan_mark_refs
1.20 for_each_rtx
1.19 htab_traverse
1.10 approx_reg_cost
1.09 clear_table
1.09 ggc_alloc
1.08 convert_to_ssa

Invocation: 403-gcc-cp-decl
% time name
12.56 compute_transp
6.50 bitmap_operation
5.84 clear_table
3.75 canon_rtx
3.31 delete_null_pointer_checks
2.89 find_base_term
2.65 sbitmap_union_of_diff
2.48 mems_in_disjoint_alias_sets_p
2.16 ix86_find_base_term
1.94 expunge_block

1.72 init_alias_analysis
1.71 nonoverlapping_memrefs_p
1.62 ggc_mark_rtx_children_1
1.61 sbitmap_vector_alloc
1.50 compute_dominance_frontiers_1
1.39 htab_traverse
1.36 sbitmap_zero
1.35 try_combine
1.23 propagate_one_insn
1.16 ggc_set_mark

Invocation: 403-gcc-expr2
% time name
18.09 clear_table
9.29 compute_transp
6.18 bitmap_operation
5.88 loop_regs_scan
4.33 delete_null_pointer_checks
3.08 expunge_block
2.46 sbitmap_union_of_diff
2.10 htab_traverse
1.72 sbitmap_vector_alloc
1.51 init_alias_analysis
1.38 sbitmap_zero
1.29 compute_dominance_frontiers_1
1.22 reg_is_remote_constant_p
1.22 in_expr_list_p
1.01 mems_in_disjoint_alias_sets_p

Invocation: 403-gcc-expr
% time name
19.03 clear_table
10.77 compute_transp
6.12 bitmap_operation
4.34 loop_regs_scan
4.13 delete_null_pointer_checks
3.15 htab_traverse
3.09 expunge_block
2.59 sbitmap_union_of_diff
1.59 sbitmap_vector_alloc
1.49 compute_dominance_frontiers_1
1.43 mems_in_disjoint_alias_sets_p
1.42 init_alias_analysis
1.34 sbitmap_zero
1.25 scan_loop
1.20 canon_rtx

Invocation: 403-gcc-g23
% time name
24.92 reg_is_remote_constant_p
11.68 htab_traverse
10.35 clear_table
4.90 bitmap_operation
4.43 delete_null_pointer_checks
4.26 fixup_var_refs_insns
3.58 fixup_var_refs_1
3.13 single_set_2
2.57 expunge_block
2.13 fixup_var_refs_insn
1.89 htab_empty
1.79 loop_regs_scan
1.77 sbitmap_union_of_diff
1.74 try_combine
1.08 compute_dominance_frontiers_1

Invocation: 403-gcc-s04
% time name
22.59 clear_table
12.17 loop_regs_scan
10.04 reg_is_remote_constant_p
7.09 bitmap_operation
6.51 compute_transp
4.42 delete_null_pointer_checks
2.45 sbitmap_union_of_diff
1.43 sbitmap_vector_alloc
1.36 find_base_term
1.33 expunge_block
1.31 single_set_2
1.21 mems_in_disjoint_alias_sets_p
1.20 sbitmap_zero
1.18 canon_rtx

Invocation: 403-gcc-scilab
% time name

5.49 ggc_mark_rtx_children_1
4.46 ggc_set_mark
4.40 init_alias_analysis
2.53 ggc_mark_rtx_children
2.34 bitmap_operation
2.30 ggc_pop_context
2.21 propagate_one_insn

R. Rico, V. Escuder

30

1.91 cse_insn
1.90 note_stores
1.81 approx_reg_cost
1.68 for_each_rtx
1.62 constrain_operands
1.36 ggc_mark_trees
1.22 reg_scan_mark_refs
1.20 ggc_alloc
1.13 find_reloads
1.04 reg_is_remote_constant_p
1.00 bitmap_set_bit

Invocation: 403-gcc-typeck
% time name
17.94 clear_table
15.10 loop_regs_scan
5.69 compute_transp
5.56 bitmap_operation
2.80 sbitmap_union_of_diff
2.75 expunge_block
2.69 delete_null_pointer_checks
1.50 init_alias_analysis
1.46 reg_is_remote_constant_p
1.34 sbitmap_vector_alloc
1.21 scan_loop
1.18 compute_dominance_frontiers_1
1.11 sbitmap_zero

429.mcf

Invocation: 429-mcf-inp.in
% time name
20.53 refresh_potential
19.94 price_out_impl
18.68 primal_bea_mpp
10.64 update_tree
9.82 replace_weaker_arc
5.59 bea_is_dual_infeasible
4.45 primal_iminus
2.76 sort_basket
2.15 insert_new_arc
1.29 write_circulations
1.14 dual_feasible
1.01 suspend_impl

445.gobmk

Invocation: 445-gobmk-13x13.tst
% time name
10.14 do_play_move
6.87 dfa_matchpat_loop
6.25 fastlib
5.06 incremental_order_moves
5.06 order_moves
3.55 compute_connection_distances
3.34 hashtable_search
3.31 assimilate_string
3.16 popgo
3.14 get_next_move_from_list
2.80 approxlib
2.61 do_find_defense
2.36 do_attack
2.32 is_self_atari
1.98 do_get_read_result
1.90 chainlinks2
1.77 compute_primary_domains
1.64 update_liberties
1.52 count_common_libs
1.48 find_persistent_reading_cache_entry

Invocation: 445-gobmk-nngs.tst
% time name

10.8 do_play_move
6.68 fastlib
5.24 dfa_matchpat_loop
5.17 order_moves
5.15 incremental_order_moves
4.06 compute_connection_distances
3.46 hashtable_search
3.41 assimilate_string
3.32 popgo
2.96 approxlib
2.74 accumulate_influence
2.72 do_find_defense
2.43 do_attack
2.21 is_self_atari

2.15 chainlinks2
2.01 do_get_read_result
1.64 update_liberties
1.59 count_common_libs
1.55 matchpat_loop
1.40 hashtable_partially_clear

Invocation: 445-gobmk-score2.tst
% time name
13.59 matchpat_loop
8.77 hashtable_clear
7.30 do_play_move
5.06 dfa_matchpat_loop
5.05 accumulate_influence
4.99 compute_connection_distances
4.10 fastlib
3.14 incremental_order_moves
3.10 order_moves
2.41 assimilate_string
2.28 popgo
2.14 update_liberties
1.90 approxlib
1.79 hashtable_search
1.60 do_find_defense
1.49 is_self_atari
1.47 do_attack
1.27 do_get_read_result
1.12 chainlinks2
1.07 count_common_libs

Invocation: 445-gobmk-trevorc.tst
% time name
10.98 do_play_move
6.54 fastlib
5.37 incremental_order_moves
5.15 order_moves
4.96 compute_connection_distances
4.20 dfa_matchpat_loop
3.65 assimilate_string
3.44 popgo
3.32 hashtable_search
3.01 approxlib
2.68 do_find_defense
2.45 do_attack
2.37 is_self_atari
2.10 do_get_read_result
2.07 hashtable_clear
1.90 chainlinks2
1.85 get_next_move_from_list
1.76 update_liberties
1.64 count_common_libs
1.50 is_suicide

Invocation: 445-gobmk-trevord.tst
% time name
12.75 do_play_move
7.85 compute_connection_distances
6.63 fastlib
4.97 incremental_order_moves
4.93 order_moves
3.83 assimilate_string
3.75 popgo
3.52 dfa_matchpat_loop
3.04 accumulate_influence
2.82 approxlib
2.60 hashtable_search
2.27 matchpat_loop
2.10 do_find_defense
1.98 is_self_atari
1.76 chainlinks2
1.75 do_attack
1.70 remove_liberty
1.60 is_suicide
1.55 do_get_read_result
1.55 count_common_libs

456.hmmer

Invocation: 456-hmmer-retro
% time name
95.19 P7Viterbi
2.24 sre_random
1.96 FChoose

Invocation: 456-hmmer-swiss41
% time name
98.97 P7Viterbi

SPEC CPUint2006 characterization

 31

458.sjeng

Invocation: 458-sjeng-ref
% time name
19.57 std_eval
8.10 setup_attackers
8.01 gen
5.56 remove_one
4.94 order_moves
4.74 search
4.17 is_attacked
4.10 push_slidE
4.00 rook_mobility
3.67 Pawn
3.41 checkECache
3.37 make
3.12 ProbeTT
2.91 bishop_mobility
2.47 unmake
2.02 check_legal
1.84 see
1.51 qsearch
1.47 Rook
1.07 f_in_check

462.libquatum

Invocation: 462-libquantum-1397-8
% time name
37.96 quantum_toffoli
21.41 quantum_cnot
21.02 quantum_sigma_x
8.98 quantum_swaptheleads
5.53 __umoddi3
2.26 quantum_state_collapse
1.47 quantum_gate1

464.h264ref

Invocation: 464-h264ref-foreman-ref1
% time name
25.69 SetupFastFullPelSearch
21.43 FastFullPelBlockMotionSearch
11.94 SATD
6.99 FastPelY_14
6.64 SubPelBlockMotionSearch
3.73 SetupLargerBlocks
3.60 dct_luma
3.28 UMVLine16Y_11
2.51 FastLine16Y_11
1.27 UMVPelY_14
1.18 BlockMotionSearch

Invocation: 464-h264ref-foreman-ref2
% time name
22.02 SetupFastFullPelSearch
13.47 FastFullPelBlockMotionSearch
10.47 SATD
6.93 dct_luma
5.65 SubPelBlockMotionSearch
5.32 FastPelY_14
4.20 biari_encode_symbol
3.03 SetupLargerBlocks
2.86 UMVLine16Y_11
2.32 FastLine16Y_11
1.56 getNonAffNeighbour
1.43 Mode_Decision_for_4x4IntraBlocks
1.26 OneComponentChromaPrediction4x4
1.15 UMVPelY_14
1.08 dct_chroma

Invocation: 464-h264ref-sss-ref
% time name
26.36 SetupFastFullPelSearch
10.58 FastFullPelBlockMotionSearch
10.14 SATD
7.63 dct_luma
6.29 FastPelY_14
5.71 SubPelBlockMotionSearch
3.34 SetupLargerBlocks
2.67 FastLine16Y_11
1.88 biari_encode_symbol
1.76 getNonAffNeighbour
1.69 Mode_Decision_for_4x4IntraBlocks
1.37 dct_chroma

1.34 OneComponentChromaPrediction4x4
1.25 UMVLine16Y_11
1.14 BlockMotionSearch
1.13 store_coding_state
1.05 get_mb_block_pos
1.03 RDCost_for_4x4IntraBlocks
1.00 find_sad_16x16

471.omnetpp

Invocation: 471-omnetpp-ref
% time name
19.52 cMessageHeap::shiftup
7.58 cGate::deliver
4.66 cSimulation::selectNextModule
4.41 cModule::findGate
3.95 cObject::setOwner
3.94 EtherMAC::handleMessage
3.85 cOutVector::record
3.70 cSubModIterator::operator++
3.31 cFileOutputVectorManager::record
2.93 cMessageHeap::insert
2.54 cArray::get
2.54 cSimulation::setContextModule
2.25 cMessage::operator=
2.18 cSimpleChannel::deliver
2.06 cObject::~cObject
1.89 EtherMAC::printState
1.50 cQueue::remove_qelem
1.35 cMessageHeap::getFirst
1.29 cSimpleModule::arrived
1.14 cSimpleModule::sendDelayed

473.astar

Invocation: 473-astar-Biglakes
% time name
25.63 way2obj::releasepoint
24.87 wayobj::makebound2
12.12 regwayobj::isaddtobound
11.02 regwayobj::makebound2
9.44 regmngobj::getregfillnum
4.73 way2obj::releasebound
4.72 way2obj::isaddtobound
2.93 way2obj::addtobound

Invocation: 473-astar-rivers
% time name
40.64 wayobj::makebound2
25.82 way2obj::releasepoint
9.92 regwayobj::makebound2
9.23 regmngobj::getregfillnum
5.10 way2obj::releasebound
3.69 way2obj::addtobound
2.89 way2obj::isaddtobound
1.61 regwayobj::isaddtobound

483.xalan

Invocation: 483-xalan-ref
% time name
10.70 __gnu_cxx::__normal_iterator
9.59 xercesc_2_5::ValueStore::isDuplicateOf
9.50 xercesc_2_5::ValueStore::contains
8.01 xalanc_1_8::XStringCachedAllocator::destroy
6.32 xercesc_2_5::BaseRefVectorOf::elementAt
4.98 xercesc_2_5::ValueVectorOf::size
4.54 xalanc_1_8::ReusableArenaBlock::ownsObject
3.85 xercesc_2_5::ValueVectorOf::elementAt
2.84 xercesc_2_5::NameDatatypeValidator::compare
1.90 xalanc_1_8::XStringCachedAllocator::createString
1.63 xercesc_2_5::BaseRefVectorOf::elementAt
1.54 xalanc_1_8::ReusableArenaBlock::blockAvailable
1.52 xalanc_1_8::XalanDOMStringCache::release
1.40 Xalanc_1_8::VariablesStack::findEntry
1.34 xalanc_1_8::FunctionSubstring::execute
1.20 Xalanc_1_8::XalanDOMString::equals
1.14 xalanc_1_8::XPath::executeMore
1.10 xalanc_1_8::XalanReferenceCountedObject::removeRef

erence
1.06 xalanc_1_8::ElemTemplateElement::executeChildren

