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Abstract 
 

SPEC CPU benchmark suite has become the most frequently used suite for computer architecture 
research. The workload is designed to stress the hardware of the machines for the next following years. 
Consequently, both the executed instructions count and the memory map size have been considerably 
increased in the currently in use release, the SPEC CPU2006, compared to the previous one. But this fact 
results in prohibitive experimentation time or resources requirements for research using simulation 
techniques or embedded developing tools. 

There is considerable material in the relevant literature discussing about the correct use of SPEC 
CPU benchmarks and alternatives to avoid problems in the experimentation area. There are some studies 
undertaking characterizations of the SPEC CPU benchmarks from different points of view, but these are 
always focused in the reference workload set. 

In this technical report, the three sets of workloads supported by SPEC for the CPUint2006 suite, 
test, train and reference, are analysed in attention to three microarchitecture-independent characteristics: 
dynamic instruction count, memory usage, and subroutine call distribution. The contents include 
explanations of why they are selected, how they are used to characterize each benchmark program as well 
as how much microarchitecture-independent they really are. Results are presented for each individual 
invocation of the programs, including some remarks and conclusions. 

The results from this work will help researchers to find a representative set of workloads for the 
SPEC CPU int2006 program binaries to use in their experiments whenever they have to discard using the 
reference workload due to time or resource constraints. 
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1. SPEC benchmarks 
 

SPEC is the acronym for Standard Performance Evaluation Corporation, a non-profit organization 
whose purpose is to define and maintain a set of standard benchmarks for computer systems and make 
them available to the users of such systems as a common reference point in the evaluation of computer 
performance. It is participated by computer manufacturers, system integrators, consultants, publishers, 
universities and research organizations [22]. 

Since its foundation in 1988, the SPEC consortium has developed and distributed technically reliable 
benchmarks based on real applications. The selection of inputs and workload is performed by the 
consensus amongst consortium members willing for a transparent, comparable, reproducible and non-
proprietary solution, as the organization aim is “an ounce of honest data is worth a pound of marketing 
hype”. 

SPEC currently offers benchmark suites for the evaluation of different aspects of computation such 
as performance of CPU, graphics, distributed Java computing, web-servers, and network file systems. 
 

1.1. The SPEC CPU suite 
 

The benchmark suite from the SPEC organization in the field of performance quantification for 
intensive-computing is the SPEC CPU suite. The SPEC CPU suite aim is to be representative of 
programming style and application fields of real worldwide computer-intensive workload. 

The first delivered set in 1989 had 10 programs and it was known as SPECmark. The most recent 
generation of the set was announced on August 24, 2006 (SPEC CPU2006) and it is made of 29 programs 
classified into two groups: one for integer computation (SPEC CPUint2006) and the other for floating 
point computation (SPEC CPUfp2006). A more complete historical perspective of computer-intensive 
tests can be found, for instance, in Henning's work [10]. 

SPEC CPU programs are well known real world applications written in high level, portable, 
language (C, C++ or FORTRAN) with slight code modifications in order to minimize input/output and 
thus let the processor, memory and compiler be the factors under evaluation. In fact, it is a requirement 
that input/output workload is less than 5%. Another requirement is that memory consumption and 
execution time should be significant for each generation of computers with growing power and capacity. 
The organization has strict restrictions of evaluation rules affecting code, compilation flags and other 
aspects of execution environment of the test programs. 

The workload sets the amount of processing performed by each benchmark run. The tools distributed 
by SPEC allow the specification of three different sizes of input data producing different workloads: test, 
train and reference (“ref” for short). The reference size stands for the reference workload, that is, the input 
data and command-line options when applicable, used for actual measurements. The test input sets are 
only used to check that programs compile and execute correctly before launching a real run or to tune up 
optimization options. Similarly, train inputs are used for profile-based compiler optimizations, so the 
reference set is the only reportable set. 

The SPEC CPU suite has a widespread usage by computer vendors, it is widely accepted by 
consumers and it is very commonly found too in the academic and research worlds although there is an 
outstanding debate about how to use it, its convenience and drawbacks, and whether is it or not necessary 
to design an alternative for research usage, etc. [1, 2]. 
 

1.2. SPEC CPU2006 description 
 

The SPEC CPU2006 benchmark suite consists on a set of 12 programs for integers (SPEC 
CPUint2006) written in C and C++ and 17 programs for floating point (SPEC CPUfp2006) written in C, 
C++ and FORTRAN. The objective of these computer-intensive programs is to provide portable, credible 
and real-world application-based benchmarks for quantifying the performance of the set processor, 
memory and compiler. 

In the relevant literature we can find several papers undertaking the description of the suite from 
different perspectives. A description for all of the programs of the suite SPEC CPU2006 can be found in 
one of the Henning works [9] and a detailed explanation about the C++ suite programs, in an article 
written by Wong [26]. Design requirements of the suite SPEC CPU2006 have established the memory 
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consumption top in about 900MB, allowing the suite to run on machines with 1GB of memory. The 
memory utilization of the programs running under the reference workload is analyzed in Henning [11] 
and Gove [4]. The paper by Korn and Chang studies how different page sizes affect the performance of 
the benchmarks [16]. From the I/O perspective, an article from Ye, Ray and Kaeli [29] show that the I/O 
activity of the SPEC CPU2006 is far below the limit of 5% imposed by the organization. The subroutine 
call profile of the suite SPEC CPU2006 for the reference workload is presented in Weicker and Henning 
[25]. The article by Gove and Spracklen provides an interesting evaluation of correspondence between 
train and reference workloads in SPEC CPU2006 [5]. Other works discuss how to interpret performance 
counters in the context of SPEC CPU2006 [12], or how the benchmark tools work [23], or which are the 
main performance differences between x86-32 and x86-64 binaries. 
 

1.3. Concerns about SPEC CPU and alternatives 
 

As computer systems get faster and have more memory because it gets cheaper, the benchmark run 
times and memory consumption have also increased across generations [10] to ensure that the 
benchmarks can stress the target systems enough to make meaningful measurements. The SPEC CPU 
benchmark suite is used by manufacturers to report performance of their systems, by customers to make 
purchasing decisions, and by designers and researchers to evaluate novel ideas. However, although it is a 
pretty good tool for the computer market, it significantly increases the cost of performance evaluation as 
explained by KleinOsowski and Lilja in [15] and Haskins et al. in [8] among other authors. So, although 
this set has become the most frequently used suite for computer architecture research, it can also be 
detected that experimentation is actually carried using the SPEC CPU benchmarks only partially, and this 
sub-utilization is not always well justified [1, 2]. 

The strategy followed by the research community to cope with this situation follows two principal 
directions. One is to develop techniques to reduce experimentation time, and the other is finding a smaller 
representative subset of the benchmark programs. 
 

1.3.1. Simulation time reduction 
 

The reduction of input data sets and sampling methods belong to this first approach. They can also 
be combined: sampling is often used together with reduced input data sets. 

The idea of reducing input data sets is to use the same programs from the original suite and decrease 
the workload submitted by acting upon the arguments the binaries are invoked with. In addition to 
evaluation time reduction, this approach may also allow to decrease the memory map size. One of the 
pros of the method is that programs execute completely including its initialization phase, computing 
phase and cleaning phase [8]. Among the cons is that different input sets could cause the program to 
exercise different paths [5, 20, 25]. One of the most extended reduced input data sets was the MinneSPEC 
[15]. This reduced workload was developed for the SPEC CPU2000 suite seeking equivalence of results 
compared to the reference workload. 

Sampling reduces workload by using segments of execution only. The selection of segments can be 
done in a blindly manner by random or uniform collection or in a smart manner by representative analysis 
based on statistical methods [27, 30]. A big problem to deal with is that machine state at the simulation 
time starting point is not the same as it is upon real execution time [8]. 
 

1.3.2. Subsetting 
 

The second approach to decrease the resources used by the benchmarks for research consists on 
finding a smaller but representative subset of programs. The method lies in the hypothesis that the suite is 
redundant. Redundancy in SPEC CPU benchmarks has been predicated since its first release. In the case 
of SPEC89 suite it was outlined by Saavedra and Smith [21], and by Giladi and Ahituv [3]. For the SPEC 
CPU95 suite it was reported in several works from Gustafson [7, 6]. Then, Vandierendonck and De 
Bosschere and Luo et al. conclude that the SPEC CPU2000 suite is redundant [17, 24]. Finally, about the 
SPEC CPU2006, McGhan ensures that the suite application programs are redundant [18] and so do other 
later publications which apply statistical methods in their analysis reaching the same conclusion [14, 20]. 

Subsetting is a common technique that has been applied quite often. A high percentage of research 
works make a partial use of SPEC CPU suite using not very convincing or not well-founded arguments 
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sometimes [1, 2]. The most frequently used technique to find representative suite subsets is the 
quantification of similarity based on statistical analysis [13, 30]. The problem is that results depend 
strongly on both the selected characteristics for describing similarity and the statistical way to measure 
similarity (namely “distance”) [17]. 

As far as we know, for the SPEC CPU2006 only Phansalkar et al. have proposed a representative 
subset whose justification lies in statistical analysis [19]. 
 

2. SPEC CPUint2006 characterization 
 

The matter of this technical report is confined to the integer benchmark suite (SPEC CPUint2006) 
because this set is far more used for research purposes than the floating point set of the SPEC CPU suite. 
Justifications of this fact are diverse: floating point code is highly branch predictable and is easier to 
parallelize, integer programs are more suitable for general propose exploration and so on. Citron in [1] 
makes a deeper analysis about the convenience of using the integer set. 

Programs can be characterized using microarchitecture-dependent characteristics or 
microarchitecture-independent characteristics. Cycles per instruction (CPI), cache miss-rate, branch 
prediction accuracy or execution time belong to the first group whereas memory consumption, subroutine 
call distribution, instruction mix, instruction level parallelism (ILP) or dynamic instruction count usually 
are classified in the second group. But to be precise, we must make a few points arguing upon the so 
claimed microarchitecture-independence of several figures from the second group. 

- Some of these group characteristics highly rely upon the instruction set architecture (ISA) used 
to compile the program and obtain the binary code and so, they cannot be considered just a pure 
quality of the HLL (High-Level Language) programs in the suite. This is the case of instruction 
mix and dynamic instruction count. Thus, for instance, both of these figures depend on whether 
the instruction set is RISC or CISC. 

- Some others characteristics, such as subroutine call distribution, are influenced by compiler 
optimizations, operating system, and/or underlying hardware. Thus, the same program flow can 
derive in different subroutine profiles caused by variations of individual instruction execution 
time or latency. Also library functions, compiler optimizations, pointers size or the method used 
to passing arguments, can change the results. 

- The memory usage profile can be influenced by many factors affecting memory consumption: 
compiler optimizations, size of pointers, memory pages allocation policy, page size and so on. 

- In the case of ILP, the method used to quantify instruction level parallelism may jeopardize 
results introducing microarchitecture-dependent information. So for instance, if the method relies 
upon indirect measures like a ratio between executed instructions vs. cycles consumed, then 
things like cache misses or number of functional units present in the hardware or simulator 
configuration may contaminate the figures obtained for the ratio. 

Despite the above stated conditions, we have selected dynamic instruction count, memory map size 
and subroutine call distribution for our work. The reasons are explained next. 

Dynamic instruction count, as stated above, depends on ISA. However, if the information we are 
looking for is the relative computational load among benchmarks, this figure can be considered 
microarchitecture-independent if obtained using the same hardware. In these conditions, dynamic 
instruction count reveals the relative length of each benchmarks compared with the rest for a given 
architecture or, in other words, which are the most CPU time consuming benchmarks. With very few 
exceptions, the results obtained also stand for other instruction set architectures, as it is a relative figure. 
One of these exceptions is produced when no 64-bit arithmetic operations are supported directly in 
hardware and thus a single 64-bit arithmetic operation has to be implemented with multiple 32-bit 
arithmetic operations. That is the case of 462.libquantum benchmark as has been reported in [28] which 
causes a change in the relative proportion kept with the rest of benchmarks for this program. 

We have also chosen memory usage profile because it provides a special and particular footprint of 
each benchmark and workload. Additionally, memory consumption is a specific concern in some areas 
like embedded system research where low level memory utilization profiles are a must and consequently, 
it is useful to know how sensitive is the amount of memory consumed by each benchmark to its input data 
sets. 

Finally, subroutine call distribution is an efficient method to observe differences in the behavior of a 
given program using different input data. This provides for characterization of a given benchmark against 
the three SPEC workloads and beyond: a profile for each invocation with different inputs and arguments. 
Again, gathering relative figures is appropriate to extrapolate among architectures where the same 
differences, generally, still apply. 
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In the forthcoming sections we review the three selected characteristic for the integer programs of 
the suite. The dynamic instruction count depends on the target instruction set architecture for which the 
source code is compiled, as stated above. We have selected the x86-32 instruction set architecture for two 
reasons: first because it is very extended and second because there is another work that reports dynamic 
instruction counts for the reference workload using this ISA that we can use for contrasting results [20]. 
 

2.1. Executed instruction count in the SPEC CPUint2006 
 

As stated in a previous section the size of the suite has grown along its different editions (SPEC89, 
SPEC92, SPEC CPU95, SPEC CPU2000 and SPEC CPU2006) both in lines of code and in number of 
modules. 

Table 1 shows x86-32 executed instruction counts (dynamic instruction count) for the three 
workloads (test, train and reference) of the dynamically linked SPEC CPUint2006 programs. Values 
presented are from a Pentium M (1.5GHz, 1MB L2, 1GB) processor, running the Linux (Fedora Core 6, 
kernel 2.6.x) operating system and using the gcc compiler (version 3.4.2). They were obtained using the 
ptrace system call. The values for the reference workload are quite similar to the ones reported by 
Phansalkar et al. [20] although they were taken in a Pentium D processor running Linux Suse. 

In general, statically linked executables exhibit a lower number of instruction counts, about less than 
1%. 
 

Table 1. Dynamic instruction count for each program and workload in the integer suite SPEC CPUint2006.  
 test - billions train - billions ref - billions 

400.perlbench 0.6 125 2,018 
401.bzip2 33.6 186 2,665 
403.gcc 5.2 4 1,428 
429.mcf 4.8 24 357 
445.gobmk 61.4 290 1,814 
456.hmmer 18.0 322 3,377 
458.sjeng 16.4 521 2,507 
462.libquantum 0.5 21 4,033 
464.h264ref 99.4 567 4,384 
471.omnetpp 2.3 610 745 
473.astar 26.7 353 1,446 
483.xalancbmk 0.4 337 1,410 

 
For the cases when a test program is executed several times with different data input sets, the 

instruction count shown is an accumulation for all the runs. However we must keep in mind that every 
input set may be exercising a different part of the hardware. 

The SPEC CPUint2006 executed instruction count for the reference workload are about a few 
trillions (∝1012) whereas they were only about a few hundred billions (∝1011) in the SPEC CPUint2000. 

As table 1 shows, there is no uniform increasing order of the number of instructions executed for the 
test – train – reference sets for every benchmark program. Although in many cases we do observe an 
increase of about one order of magnitude for each set like for instance in 401.bzip2, 456.hmmer or 
464.h264ref, this is not always the case. Frequently the gap between test and train is more than two orders 
of magnitude like in 400.perlbench, 483.xakancbmk or 471.omnetpp but sometimes there is not much 
difference or even, like for 403.gcc it is a bit lower for the train workload. The train – reference relation 
has fewer exceptions to the one-order-of-magnitude gap vs. reference (403.gcc, 462.libquantum, 
471.omnetpp) but still they stand. 

The lower figure in the test workload is in the order of billions (109) of instructions. Half of the 
programs perform around this figure and the other half are around one order of magnitude more (1010). 
The programs under the train workload execute around 1011 instructions with few exceptions and under 
the reference workload totals are beyond 1012 executed instructions. 

Annex I presents dynamic instruction counts for each program invocation and each workload. The 
results allow a comparative insight among binaries and its different invocations (see “Annex I: dynamic 
instruction count in the SPEC CPUint2006”; there we show figures instead of values since the 
comparison of computational load is more important that the actual values). We comment on this 
information in the final conclusions section. 
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Obviously, the actual instruction counts may be different for other instruction sets. Ye et al. in [28] 
make a performance comparison between x86-32 and x86-64 instruction sets for the SPEC CPUint2006 
suite. For other instruction sets there are no studies published in the relevant literature as far as we know. 
 

2.2. SPEC CPUint2006 memory usage 
 

The committee selecting the programs of the suite established the limit of memory usage having in 
mind 1GM main memory machines. For the SPEC CPU2000 the limit was 256MB. If we account for 
some room for the operating system, the maximum memory size (memory footprint) used for the suite 
SPEC CPU2006 is, approximately 900 MB. 

For of RSS (Resident Set Size) or VSZ (Virtual Size), memory utilization profile is divided into two 
large groups: in some cases it grows rapidly and then remains constant while in others it varies along 
time. Henning presents this graphically in “SPEC CPU2006 Memory Footprint” [11] which, essentially 
agrees with the graphics ones we obtained (see “Annex II: memory usage profiles in the SPEC 
CPUint2006”). In addition to Henning’s work, we offer results of test and train workloads that can 
slightly change some assumptions reported there (as we comment on the final conclusions section) since 
we are more interested in the behavior across different workloads than in the evolution of an individual 
invocation of a binary. 

It is also worth mentioning that both analysis, Henning’s and ours, were made with dynamically 
linked executables and it is possible that some smaller memory usage could be registered if statically 
linked programs were used instead, especially for cases where included library sizes are large enough to 
impact the amount of text memory used by the benchmark. 

We obtained memory usage figures out from the information in the /proc pseudodirectory in a 
machine running Linux (Fedora Core 6, kernel 2.6.x) whereas in Henning’s work they used the ps 
command in a machine running Solaris under a SPARC processor. Annex II shows memory usage 
profiles graphically for each benchmark invocation within each workload set. The X axis is not time 
based; instead it presents the complete execution lifetime of the program with invoked with a given input 
data set. 

Although the SPEC organization made the new suite memory size usage to be larger than the 
previous edition (and that seems to be the case in terms of RSS or VSZ), Gove uses an alternative metric 
known as WSS (Working Set Size) that measures the memory size of the data area really used, thus 
showing that the actual memory size is almost the same as the SPEC CPU2000 [4]. Only a small 
percentage of time (less than 5%) the programs use over 256MB. An explanation for this may be that 
applications from the suite make large memory reservations but then they use only reduced data area as 
explained in the referred article. 
 

2.3. SPEC CPUint2006 subroutine call distribution 
 

Subroutine profiling is both a helpful performance tool and a precise characterization method. 
Subroutine profiling is especially useful to find out if different invocations of the same program using 
different inputs are similar or not. In the relevant literature we find the work of Weicker and Henning 
reporting the subroutine profile for the reference workload [25]. In this technical report we present the 
profiling results for each individual invocation of the benchmark program for each of the three workloads, 
test, train, and, of course, reference. 

It is understood that profiling results can vary from an experimental environment to another as they 
are not completely independent from the hardware and the software on which the program is running as 
we mentioned above. Even for the same instruction set and the same compiler, execution times for 
individual instructions may differ among implementations of processors of the same family. 

In fact, the experimental conditions used here are different from the work previously mentioned: 
here the target instruction set is the x86, all binaries are 32 bits and the optimization level is –O2 whereas 
the previous cited work reports profiling results using the SPARC instruction set and  optimization level  
–O. In any case, we think that these differences can contribute to a much deeper knowledge of binaries 
and workloads. 

To obtain the subroutine call profile in Linux we compiled the programs using the -pg option of the 
gcc compiler, which causes the insertion of code for collecting information, and then we used the gprof 
command to display the collected data of each benchmark. Annex III contains the subroutine call 
distribution we obtained (see “Annex III: subroutine profiles in the SPEC CPUint2006”). In order to 
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facilitate a possible comparative analysis by the reader with the work of Weicker and Henning, we are 
presenting information in the same fashion and using the same convention for long names that they used. 
That is, each table list consists of the 20 highest-scoring subroutines only; routines called less than 1% of 
the time are not reported and long names from C++ routines have been truncated too. 
 

3. Conclusions 
 

Several conclusions can be derived concerning dynamic instruction counts. The first observation is 
that some programs from the SPEC CPUint2006 suite can produce extremely different dynamic counts 
depending on the input data sets whereas others are more regular in this aspect. Thus we could say that 
some of them are more elastic that others in computational terms. The fact is that it takes several 
invocations of some programs to reach a similar computational work that others get with just a single 
invocation. Among the elastic binaries, ranging up to four orders of magnitude in the number of executed 
instructions with a single invocation are 458.sjeng, 462.libquantum, 471.omnetpp, and 483.xalancbmk. 
On the other extreme for non-elastic binaries we have 400.perlbench, 403.gcc, 429.mcf, and 445.gobmk. 

A final statement on instruction dynamic counts is that, comparing the figures obtained for the three 
sets test, train, and reference workloads, we observe that the values obtained for each single invocation of 
a program are more regular in the reference workload set than they are within the test and train 
workloads. 

We may also state some conclusions concerning memory usage. For the reference workload, the 
results we present are virtually identical to the ones reported in Henning’s article [11] although we go into 
more detail providing a graphic per-invocation of each benchmark while the named work consolidates all 
the invocations in a single graph. The only exception is program 456.hmmer for which we measured 
considerably lower numbers of memory usage for both invocations, although it is not excessively 
surprising because it is well known that there are many factors affecting memory consumption (operating 
system, compiler, etc.). 

In the graphic samples for the test and train workloads we gather more information of the 
benchmarks for different input data sets than in [11]. We can see, for example that 429.mcf, considered 
stable together with 458.sjeng in [11] for the reference workload, actually has a variation over time in its 
memory requirements, as it becomes apparent for the test and train workloads; also, it reaches different 
top values which lead us to consider it as a non-stable benchmark (in memory usage), sensible to input 
data set changes. 

On the other hand, if we look at all the different graphs for 445.gobmk we can see how it uses 
practically the same amount of memory for every invocation in every workload, reached short after it 
begins executing. So, if there is room for some flexibility, we may consider that 445.gobmk is also stable 
in addition to 458.sjeng across different workloads. 

As for comparative maximums of memory consumed among workloads test, train and reference, if 
we exclude 458.sjeng and 445.gobmk which remain constant independently of the input data set, as we 
explained above, every benchmark program follows the tendency of increasing memory consumption, 
that is: every program uses more memory in reference than it does in train; and more in train than it does 
in test. 

About lowest tops, all benchmark but 429.mcf and 448.sjeng have several invocations using less than 
30MB in the test workload. The same stands for the train workload with additional exceptions of 
471.omnetpp reaching close to the 45 MB top and 483.xalancbmk that goes beyond 120MB, which is 
unusual because only in the reference workload set benchmarks often use more than 100MB. 

If we look at the shapes of the memory profile graphs, we find that there is a large variety. But what 
we are most interested is on learning whether or not this shape changes for different invocations of the 
same program. In this sense, some maintain the memory profile shape for all invocations: 401.bzip2, 
445.gobmk, 456.hmmer, 458.sjeng, 462.libquatum, 464.h264ref, 473.astar, 483.xalancbmk. Programs 
429.mcf and 471.omnetpp maintain the memory profile shape in all invocations of test and train 
workloads only. In contrast, programs 400.perlbench and 403.gcc show different shapes per invocation, 
indicating possible different program flows. 

Finally, analyzing subroutine call distributions leads us to the following conclusions: Programs 
400.perlbench and 403.gcc exhibit quite different subroutine call distributions for each invocation, which 
means that the program follows different execution flow paths depending on the inputs and explains the 
observations made above about memory usage. 

Program 456.hmmer has a peaky profile as it uses just one subroutine around 95% of time except in 
the test workload where it uses it close to 70% of time. Program 429.mcf shows the same profile for test 
and train workloads whereas it exercises other routines for the case of the reference workload, which 
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provides an explanation for the memory behavior of this program. Programs 462.libquantum, 
464.h264ref, and 473.astar exhibit the same subroutine call profile for every invocation and workload 
always consuming 80%, 55%, and around 70% of total execution time respectively. The rest seven 
programs do show more differences in the profile, calling approximately the same set of subroutines but 
having different usage time depending on the actual invocation. 

Consequently, we can say that the control flow of benchmark programs is typically rather 
independent of workload, although we can find some exceptions where different input data sets cause the 
program to exercise different control paths, and that the subroutine distribution may vary considerably 
between invocations. For this reason we should be quite cautious when looking for workloads 
representatives of the reference workload as Gove and Spracklen recommend [5]. 
 

4. Some recommendations for selecting a representative 
workload 

 
In this section we make a few considerations to those looking for alternatives for applying the 

reference workload of the SPEC CPUint2006 suite in their experimentation fields because of its excessive  
weight, in terms of dynamic instruction count, memory size or both. Despite using strategies as those 
named in sect. 1.3 to find representatives, we then propose other alternatives for two types of scenario: 
execution time constrained and memory size constrained environments.  
 

4.1. Execution time constrained scenario 
 

Fig. 11 in Annex I shows that even for the lightest workload (the test workload), the amount of 
executed instructions is far too high for experimentation. It would be most convenient to get it down by 
around two orders of magnitude, that is, reaching dynamic counts of approximately 100 million (108) 
executed instructions. 

For the so called elastic binaries, the suggestion is to look for a reduced input data set that achieves 
the required reduced dynamic count. That requires to study the behavior of the execution time as a 
function of input arguments together with the subroutine call distribution in order to determine a correct 
representativeness. 

In the case of non-elastic binaries, things depend on the typical computational load per invocation. 
For instance, program 400.perlbench under the test workload is called several times with different inputs 
and each invocation produces a very low dynamic count each. Something similar happens with  
445.gobmk although it shows higher computational load (about one order of magnitude higher than 
400.perlbench). In both cases, any one input data set from the test workload can be chosen to decrease the 
executed instruction count, although using different argumentation to judge its representativeness. For 
400.perlbench, the subroutine call distribution suggests that every invocation exercises different 
execution flow paths and then it is reasonable to say that selecting one invocation or another would be as 
much adequate as incomplete at the same time. In contrast, for each invocation of 445.gobmk the program 
exercises similar execution flow paths, thus it can be considered a more stable choice. 

The program for which we found most difficult to reduce execution time is 401.bzip2 because it has 
a programmed fixed minimum size of 1 Mbyte buffer of data to compress and always executes three 
cycles of compressing-uncompressing. This is performed before the actual invocation to the 
compressing/decompressing logic, precisely to increase computation load. In this case, to reach a 
dynamic count of around 108 executed instructions it is necessary to modify this pre-algorithmic source 
code. 
 

4.2. Memory size constrained scenario 
 

As it has been stated before, all benchmarks but 429.mcf and 448.sjeng have several invocations 
among test and train workloads that use less than 30MB. Some of them could be used for experimentation 
when memory size constrains have to be observed. The representativeness of those invocations based on 
its subroutine call distribution again depends on each binary.  
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In the case of 400.perlbench and 403.gcc they exhibit quite different subroutine call profiles for each 
invocation, thus concluding that any one invocation can be considered adequate and incomplete at the 
same time. 

For 445.gobmk, from a memory usage profile point of view, every invocation is similar since it 
consumes the same amount of memory. The same could be said for 448.sjeng although it has a 
prohibitive amount of reserved memory that can not be decreased through input data set adaptation. 

In general, a reduced input data set generating lower dynamic instruction counts may also produce a 
lower memory consumption profile in the case of many benchmark programs, it is a statement worth to 
study more carefully: a combined effect is not discardable. 

Another recommendation is to use benchmark programs statically linked (instead of dynamically 
linked) because they generally produce a lower memory usage profile, as well as a few less executed 
instructions. 
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Annex I: dynamic instruction count in the SPEC CPUint2006 
 

 
 

Fig. 1. Dynamic instruction count for each program in the integer suite SPEC CPUint2006 for each workload (test, train and 
reference). The instruction count axis is presented in logarithmic scale. 

 
TEST workload 
 

 
 

Fig. 2. Dynamic instruction count for each program invocation in the integer suite SPEC CPUint2006 for test workload. The 
instruction count axis is presented in logarithmic scale. 
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TRAIN workload 
 

 
 

Fig. 3. Dynamic instruction count for each program invocation in the integer suite SPEC CPUint2006 for train workload. The 
instruction count axis is presented in logarithmic scale. 
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REF workload 
 

 
 

Fig. 4. Dynamic instruction count for each program invocation in the integer suite SPEC CPUint2006 for reference workload. 
The instruction count axis is presented in logarithmic scale. 
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Annex II: memory usage profiles in the SPEC CPUint2006 
 
TEST workload 
 

 
400.perlbench   -I. -I./lib attrs.pl 

 
400.perlbench   -I. -I./lib gv.pl 

 
400.perlbench   -I. -I./lib makerand.pl 

 
400.perlbench   -I. -I./lib pack.pl 

 
400.perlbench   -I. -I./lib redef.pl 

 
400.perlbench   -I. -I./lib ref.pl 

 
400.perlbench   -I. -I./lib regmesg.pl 

 
400.perlbench   -I. -I./lib test.pl 

 
401.bzip2   input.program 5 

 
401.bzip2   dryer.jpg 2 

 
403.gcc   cccp.i -o cccp.s 

 
429.mcf   inp.in 
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445.gobmk   --quiet --mode gtp < capture.tst 

 
445.gobmk   --quiet --mode gtp < connect.tst 

 
445.gobmk   --quiet --mode gtp < connect_rot.tst 

 
445.gobmk   --quiet --mode gtp < connection.tst 

 
445.gobmk   --quiet --mode gtp < connection_rot.tst 

 
445.gobmk   --quiet --mode gtp < cutstone.tst 

 
445.gobmk   --quiet --mode gtp < dniwog.tst 

 
456.hmmer   --fixed 0 --mean 325 --num 45000 --sd 200 --seed 0 bombesin.hmm 

 
458.sjeng   test.txt 

 
462.libquantum   33 5 

 
464.h264ref   -d foreman_test_encoder_baseline.cfg 

 
471.omnetpp   omnetpp.ini 
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473.astar   lake.cfg 

 
483.xalancbmk   -v test.xml xalanc.xsl 

 
 
TRAIN workload 
 

 
400.perlbench   -I./lib diffmail.pl 2 550 15 24 23 100 

 
400.perlbench   -I./lib perfect.pl b 3 

 
400.perlbench   -I. -I./lib scrabbl.pl < scrabbl.in 

 
400.perlbench   -I./lib splitmail.pl 535 13 25 24 1091 

 
400.perlbench   -I. -I./lib suns.pl 

 
401.bzip2   input.program 10 

 
401.bzip2   byoudoin.jpg 5 

 
401.bzip2   input.combined 80 

 
403.gcc   integrate.i -o integrate.s 

 
429.mcf   inp.in 
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445.gobmk   --quiet --mode gtp < arb.tst 

 
445.gobmk   --quiet --mode gtp < arend.tst 

 
445.gobmk   --quiet --mode gtp < arion.tst 

 
445.gobmk   --quiet --mode gtp < atari_atari.tst 

 
445.gobmk   --quiet --mode gtp < blunder.tst 

 
445.gobmk   --quiet --mode gtp < buzco.tst 

 
445.gobmk   --quiet --mode gtp < nicklas2.tst 

 
445.gobmk   --quiet --mode gtp < nicklas4.tst 

 
456.hmmer   --fixed 0 --mean 425 --num 85000 --sd 300 --seed 0 leng100.hmm 

 
458.sjeng   train.txt 

 
462.libquantum   143 25 

 
464.h264ref   -d foreman_train_encoder_baseline.cfg 



SPEC CPUint2006 characterization 

  19 

 
471.omnetpp   omnetpp.ini 

 
473.astar   BigLakes1024.cfg 

 
473.astar   rivers1.cfg 

 
483.xalancbmk   -v allbooks.xml xalanc.xsl 

 
REF workload 
 

 
400.perlbench   -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 1 

 
400.perlbench   -I./lib diffmail.pl 4 800 10 17 19 300 

 
400.perlbench   -I./lib splitmail.pl 1600 12 26 16 4500 

 
401.bzip2   input.source 280 

 
401.bzip2   chicken.jpg 30 

 
401.bzip2   liberty.jpg 30 

 
401.bzip2   input.program 280 

 
401.bzip2   text.html 280 
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401.bzip2   input.combined 200 

 
403.gcc   166.i -o 166.s 

 
403.gcc   200.i -o 200.s 

 
403.gcc   c-typeck.i -o c-typeck.s 

 
403.gcc   cp-decl.i -o cp-decl.s 

 
403.gcc   expr.i -o expr.s 

 
403.gcc   expr2.i -o expr2.s 

 
403.gcc   g23.i -o g23.s 

 
403.gcc   s04.i -o s04.s 

 
403.gcc   scilab.i -o scilab.s 

 
429.mcf   inp.in 

 
445.gobmk   --quiet --mode gtp < 13x13.tst 
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445.gobmk   --quiet --mode gtp < nngs.tst 

 
445.gobmk   --quiet --mode gtp < score2.tst 

 
445.gobmk   --quiet --mode gtp < trevorc.tst 

 
445.gobmk   --quiet --mode gtp < trevord.tst 

 
456.hmmer   nph3.hmm swiss41 

 
456.hmmer   --fixed 0 --mean 500 --num 500000 --sd 350 --seed 0 retro.hmm 

 
458.sjeng   ref.txt 

 
462.libquantum   1397 8 

 
464.h264ref   -d foreman_ref_encoder_baseline.cfg 

 
464.h264ref   -d foreman_ref_encoder_main.cfg 

 
464.h264ref   -d sss_encoder_main.cfg 

 
471.omnetpp   omnetpp.ini 
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473.astar   BigLakes2048.cfg 

 
473.astar   rivers.cfg 

 
483.xalancbmk   -v t5.xml xalanc.xsl 
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Annex III: subroutine profiles in the SPEC CPUint2006 
 
TEST workload 
 
400.perlbench 
 

Invocation: 400-perlbench-attrs.pl 
% time name 
22.22 Perl_yylex 
11.11 Perl_sv_upgrade 
11.11 Perl_sv_grow 
11.11 S_hv_fetch_common 
11.11 Perl_av_fetch 
11.11 Perl_pad_findmy 
11.11 Perl_sv_setpv 
11.11 Perl_yyparse 

 

Invocation: 400-perlbench-gv.pl 
% time name 
14.29 Perl_grok_hex 
14.29 Perl_newSVOP 
14.29 Perl_sv_gets 
14.29 S_scan_word 
14.29 Perl_peep 
14.29 Perl_yyparse 
14.29 perl_parse 

 

Invocation: 400-perlbench-makerand.pl 
% time name 
10.87 Perl_pp_modulo 
8.15 Perl_pp_padsv 
7.61 Perl_pp_predec 
7.07 Perl_pp_rand 
6.52 Perl_pp_gt 
5.98 Perl_pp_const 
5.43 Perl_runops_standard 
4.89 Perl_pp_int 
4.35 Perl_sv_setuv 
4.35 Perl_sv_setsv_flags 
4.35 spec_rand 
3.80 Perl_pp_and 
3.80 Perl_pp_sassign 
3.26 Perl_pp_nextstate 
3.26 Perl_cast_uv 
3.26 Perl_pp_gvsv 
2.17 Perl_sv_2iv 
2.17 S_dopoptoloop 
2.17 Perl_cast_iv 
1.63 Perl_sv_setiv 

 

Invocation: 400-perlbench-pack.pl 
% time name 

5.56 Perl_yyparse 
4.32 Perl_pp_padsv 
3.70 Perl_sv_setsv_flags 
3.70 S_hv_fetch_common 
3.70 Perl_pp_entersub 
3.70 Perl_gv_fetchpv 
3.70 S_unpack_rec 
3.09 Perl_sv_clear 
3.09 Perl_yylex 
3.09 uiv_2buf 
2.47 Perl_sv_upgrade 
2.47 Perl_pp_return 
2.47 Perl_sv_gets 
1.85 Perl_sv_catpvn_flags 
1.85 Perl_pp_nextstate 
1.85 Perl_pp_pushmark 
1.85 Perl_leave_scope 
1.85 Perl_pp_concat 
1.85 S_skipspace 
1.85 Perl_runops_standard 

 

Invocation: 400-perlbench-redef.pl 
% time name 
50.00 Perl_yyparse 
25.00 Perl_yylex 
25.00 Perl_sv_gets 

 

Invocation: 400-perlbench-ref.pl 
% time name 
16.67 Perl_yylex 
16.67 Perl_newSVpv 
16.67 Perl_keyword 
16.67 Perl_pp_pushmark 
16.67 Perl_yyparse 
16.67 perl_destruct 

 

Invocation: 400-perlbench-regmesg.pl 
% time name 
25.00 PerlIOBuf_get_cnt 
25.00 Perl_leave_scope 
25.00 Perl_pp_regcreset 
25.00 Perl_pp_cond_expr 

 

Invocation: 400-perlbench-test.pl 
% time name 
11.11 Perl_pp_nextstate 
11.11 Perl_yylex 
11.11 Perl_sv_setpvn 
11.11 Perl_leave_scope 
11.11 Perl_sv_setiv 
11.11 PerlIOBuf_write 
11.11 uiv_2buf 
11.11 Perl_pp_waitpid 
11.11 Perl_sv_inc 

 
 
401.bzip2 
 

Invocation: 401-bzip2-dryer-2 
% time name 
67.37 fallbackSort 
18.36 mainGtU 
4.15 BZ2_compressBlock 
3.49 BZ2_bzDecompress 
3.14 BZ2_decompress 
2.57 BZ2_blockSort 

 

Invocation: 401-bzip2-input.program-5 
% time name 
35.50 BZ2_blockSort 
19.17 BZ2_compressBlock 
18.74 BZ2_decompress 
11.21 BZ2_bzDecompress 
8.96 mainGtU 
3.61 handle_compress 
1.20 bsW 

 
 
403.gcc 
 

Invocation: 403-gcc-test 
% time name 

3.22 propagate_one_insn 
2.65 approx_reg_cost 
2.53 for_each_rtx 
2.38 cse_insn 
2.14 ggc_mark_rtx_children_1 
1.99 init_alias_analysis 
1.90 mark_set_1 
1.87 ggc_set_mark 
1.75 constrain_operands 
1.60 ggc_alloc 
1.51 bitmap_operation 
1.42 reg_scan_mark_refs 
1.33 bitmap_set_bit 
1.18 canon_reg 
1.11 fold_rtx 
1.11 record_reg_classes 
1.08 ggc_mark_rtx_children 
1.05 bitmap_bit_p 
1.05 ggc_mark_trees 

 
 
429.mcf 
 

Invocation: 429-mcf-inp.in 
% time name 
67.47 primal_bea_mpp 
11.39 price_out_impl 
6.96 refresh_potential 
3.22 bea_is_dual_infeasible 
2.62 sort_basket 
2.24 insert_new_arc 
2.05 update_tree 
1.09 primal_iminus 
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445.gobmk 
 

Invocation: 445-gobmk-capture.tst 
% time name 
73.04 hashtable_clear 
4.41 new_position 
1.96 fastlib 
1.96 propagate_string 
1.96 do_play_move 
1.72 is_self_atari 
1.47 do_get_read_result 
1.47 propose_edge_moves 
1.23 order_moves 
1.23 update_liberties 

 

Invocation: 445-gobmk-connect.tst 
% time name 
36.58 hashtable_clear 
9.28 compute_connection_distances 
8.78 do_play_move 
3.96 fastlib 
3.41 incremental_order_moves 
3.07 assimilate_string 
3.01 order_moves 
2.61 popgo 
2.40 new_position 
1.72 approxlib 
1.63 is_suicide 
1.29 do_trymove 
1.26 remove_liberty 
1.20 simple_ladder_attack 
1.11 is_self_atari 
1.07 do_attack 
1.01 update_liberties 
1.01 do_find_defense 

 

Invocation: 445-gobmk-connect_rot.tst 
% time name 
57.14 hashtable_clear 
7.14 do_play_move 
4.29 compute_connection_distances 
2.86 order_moves 
2.14 count_common_libs 
2.14 do_get_read_result 
2.14 propagate_string 
2.14 do_find_defense 
1.43 remove_liberty 
1.43 is_suicide 
1.43 incremental_order_moves 
1.43 assimilate_string 
1.43 edge_block_moves 
1.43 store_persistent_reading_cache 

 

Invocation: 445-gobmk-connection.tst 
% time name 
15.15 do_play_move 
11.44 compute_connection_distances 
6.81 fastlib 
5.29 incremental_order_moves 
4.99 hashtable_clear 
4.82 order_moves 
4.04 popgo 
3.85 assimilate_string 
2.52 approxlib 
2.26 hashtable_search 
2.10 is_self_atari 
2.05 do_find_defense 
1.96 is_suicide 
1.95 update_liberties 
1.89 remove_liberty 
1.80 do_attack 
1.68 do_trymove 
1.63 chainlinks2 
1.54 do_get_read_result 
1.46 count_common_libs 
1.05 remove_neighbor 
1.01 komaster_trymove 

 

Invocation: 445-gobmk-connection_rot.tst 
% time name 
42.86 hashtable_clear 
8.44 do_play_move 
7.79 compute_connection_distances 
3.90 remove_liberty 
3.90 fastlib 
3.90 incremental_order_moves 
3.25 store_persistent_reading_cache 
2.60 order_moves 
1.95 popgo 
1.95 count_common_libs 

1.30 is_suicide 
1.30 do_trymove 
1.30 chainlinks2 
1.30 assimilate_string 
1.30 simple_ladder_defend 
1.30 update_liberties 
1.30 do_find_defense 
1.30 find_connection_moves 

 

Invocation: 445-gobmk-cutstone.tst 
% time name 
23.93 hashtable_clear 
8.02 do_play_move 
5.43 fastlib 
5.30 order_moves 
4.66 incremental_order_moves 
4.53 hashtable_search 
4.14 popgo 
4.14 do_find_defense 
3.62 do_attack 
3.49 approxlib 
3.49 is_self_atari 
2.72 propose_edge_moves 
2.20 do_get_read_result 
2.20 assimilate_string 
1.94 update_liberties 
1.55 chainlinks2 
1.42 count_common_libs 
1.16 do_find_superstring 
1.03 komaster_trymove 
1.03 edge_clamp_moves 
1.03 attack3 

 

Invocation: 445-gobmk-dniwog.tst 
% time name 
10.75 dfa_matchpat_loop 
9.01 do_play_move 
5.67 fastlib 
4.72 order_moves 
4.42 incremental_order_moves 
3.42 hashtable_search 
3.26 assimilate_string 
3.12 accumulate_influence 
2.81 popgo 
2.70 do_find_defense 
2.69 compute_primary_domains 
2.55 get_next_move_from_list 
2.41 approxlib 
2.40 compute_connection_distances 
2.32 do_attack 
1.93 is_self_atari 
1.79 chainlinks2 
1.74 do_get_read_result 
1.48 count_common_libs 
1.37 matchpat_loop 

 
456.hmmer 
 

Invocation: 456-hmmer-bombesin 
% time name 
69.20 P7Viterbi 
14.50 sre_random 
13.03 FChoose 
1.89 SymbolIndex 

 
458.sjeng 
 

Invocation: 458-sjeng-test 
% time name 
15.63 std_eval 
9.02 clear_tt 
8.24 setup_attackers 
7.61 gen 
5.31 remove_one 
4.77 order_moves 
4.41 search 
3.99 QProbeTT 
3.63 push_slidE 
3.51 rook_mobility 
3.39 is_attacked 
3.16 Pawn 
2.97 ProbeTT 
2.95 make 
2.65 checkECache 
2.11 unmake 
2.08 check_legal 
1.73 bishop_mobility 
1.65 see 
1.57 Rook 
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462.libquantum 
 

Invocation: 462-libquantum-33-5 
% time name 
55.14 quantum_toffoli 
15.14 quantum_cnot 
11.35 quantum_sigma_x 
5.95 quantum_state_collapse 
5.41 quantum_swaptheleads 
4.32 __umoddi3 

 
464.h264ref 
 

Invocation: 464-h264ref-foreman-test 
% time name 
25.03 SetupFastFullPelSearch 
20.36 FastFullPelBlockMotionSearch 
11.83 SATD 
6.74 SubPelBlockMotionSearch 
6.60 FastPelY_14 
4.13 dct_luma 
3.58 SetupLargerBlocks 
3.23 UMVLine16Y_11 
2.47 FastLine16Y_11 
1.13 BlockMotionSearch 
1.07 getNonAffNeighbour 
1.07 UMVPelY_14 
1.07 writeCoeff4x4_CAVLC 

 
471.omnetpp 
 

Invocation: 471-omnetpp-test 
% time Name 

6.59 cObject::setOwner 
5.74 cMessageHeap::insert 
5.42 cModule::findGate 
4.89 TCmdenvApp::simulate 
3.24 EtherMAC::printState 
3.08 cMessageHeap::shiftup 
2.87 EtherMAC::processReceivedDataFrame 
2.34 cSimpleModule::sendDelayed 
2.23 EtherMAC::handleMessage 
2.23 EtherMAC::handleEndTxPeriod 
2.02 cSimulation::doOneEvent 
2.02 cGate::deliver 
1.70 cMessageHeap::getFirst 
1.54 MACAddress::equals 
1.49 cSimpleModule::scheduleAt 

1.38 EtherLLC::processPacketFromHigherLayer 
1.28 cSimulation::selectNextModule 
1.28 cMessage::operator= 
1.17 cObject::~cObject 
1.17 cMessage::cMessage 

 
473.astar 
 

Invocation: 473-astar-lake 
% time name 
45.95 wayobj::makebound2 
18.30 way2obj::releasepoint 
15.44 regwayobj::makebound2 
4.84 regmngobj::getregfillnum 
4.22 regwayobj::isaddtobound 
3.00 way2obj::addtobound 
2.11 way2obj::releasebound 
1.70 regwayobj::addtobound 
1.40 way2obj::isaddtobound 

 
483.xalan 
 

Invocation: 483-xalan-test 
% time name 
13.41 __gnu_cxx::__normal_iterator 
5.36 xalanc_1_8::ReusableArenaBlock::ownsObject 
3.07 xalanc_1_8::FunctionSubstring::execute 
2.68 xalanc_1_8::DoubleSupport::round 
2.30 xalanc_1_8::XalanReferenceCountedObject::addRefer

ence 
2.30 xalanc_1_8::XalanReferenceCountedObject::removeRe

ference 
2.30 xalanc_1_8::ReusableArenaBlock::blockAvailable 
2.30 xalanc_1_8::VariablesStack::findEntry 
2.30 xalanc_1_8::XStringCachedAllocator::destroy 
1.92 xalanc_1_8::XalanDOMString::equals 
1.92 xalanc_1_8::XPath::executeMore 
1.92 xalanc_1_8::ElemTemplateElement::executeChildren 
1.92 xalanc_1_8::StylesheetExecutionContextDefault::ge

tParams 
1.53 xalanc_1_8::XalanBitmap::isSet 
1.53 xalanc_1_8::XalanDOMString::equals 
1.53 xalanc_1_8::VariablesStack::push 
1.53 xalanc_1_8::XPath::runFunction 
1.53 xalanc_1_8::ElemChoose::execute 
1.15 xalanc_1_8::VariablesStack::StackEntry 
1.15 xalanc_1_8::XPath::variable 

 

 
TRAIN workload 
 
400.perlbench 
 

Invocation: 400-perlbench-diffmail.pl 
% time name 
18.83 S_regmatch 
5.60 Perl_sv_setsv_flags 
4.67 Perl_regexec_flags 
4.06 Perl_pp_padsv 
3.26 S_hv_fetch_common 
3.00 Perl_leave_scope 
2.80 Perl_pp_nextstate 
2.71 Perl_sv_clear 
2.44 Perl_sv_upgrade 
2.28 S_regrepeat 
1.98 Perl_pp_entersub 
1.92 Perl_sv_setpvn 
1.91 Perl_pp_helem 
1.70 S_regtry 
1.57 Perl_sv_eq 
1.49 Perl_pp_and 
1.46 Perl_runops_standard 
1.30 Perl_sv_free 
1.18 S_find_byclass 
1.17 Perl_save_alloc 

 

Invocation: 400-perlbench-perfect.pl 
% time name 

9.89 S_hv_fetch_common 
6.19 Perl_pp_padsv 
5.03 Perl_sv_setsv_flags 
3.64 Perl_pp_entersub 
3.39 Perl_pp_nextstate 
3.14 Perl_leave_scope 
2.82 Perl_gv_fetchpv 
2.65 Perl_pp_and 

2.64 Perl_pp_rv2av 
2.55 Perl_sv_clear 
2.35 Perl_pp_helem 
2.31 Perl_runops_standard 
1.96 Perl_sv_upgrade 
1.93 S_regmatch 
1.70 Perl_pp_aassign 
1.64 Perl_pp_pushmark 
1.63 Perl_amagic_call 
1.54 Perl_pp_ref 
1.42 S_method_common 
1.37 Perl_pp_aelemfast 

 

Invocation: 400-perlbench-scrabbl.pl 
% time name 

9.05 Perl_pp_gvsv 
7.82 Perl_sv_setsv_flags 
4.82 Perl_sv_eq 
4.59 Perl_pp_rv2av 
4.32 Perl_runops_standard 
3.66 Perl_sv_clear 
3.62 Perl_pp_gv 
3.33 Perl_pp_nextstate 
3.33 Perl_pp_aelem 
3.28 Perl_pp_and 
3.14 S_hv_fetch_common 
2.99 Perl_leave_scope 
2.25 Perl_sv_upgrade 
2.12 Perl_pp_entersub 
2.02 Perl_pp_enter 
2.00 Perl_pp_aassign 
1.92 Perl_pp_preinc 
1.84 Perl_sv_free 
1.77 Perl_pp_next 
1.76 Perl_pp_const 
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Invocation: 400-perlbench-splitmail.pl 
% time name 
46.05 S_regmatch 
3.51 S_reginclass 
2.43 S_find_byclass 
2.42 Perl_leave_scope 
2.39 S_regtry 
2.36 Perl_pp_padsv 
2.14 Perl_sv_setsv_flags 
2.00 Perl_pp_match 
1.93 Perl_pp_gvsv 
1.62 Perl_pp_nextstate 
1.51 S_hv_fetch_common 
1.45 Perl_pp_and 
1.42 Perl_save_alloc 
1.40 Perl_pp_aelem 
1.29 Perl_regexec_flags 
1.17 Perl_pp_helem 
1.15 Perl_runops_standard 

 

Invocation: 400-perlbench-suns.pl 
% time name 
14.08 Perl_sv_cmp 
8.00 S_mergesortsv 
7.29 S_hv_fetch_common 
4.76 Perl_regexec_flags 
4.05 S_regmatch 
3.34 Perl_sv_setsv_flags 
2.74 Perl_pp_split 
2.63 Perl_sv_setpvn 
2.53 Perl_pp_gvsv 
2.33 S_regtry 
2.33 S_hsplit 
2.23 Perl_runops_standard 
2.03 Perl_pp_rv2av 
1.82 Perl_sv_clear 
1.72 Perl_sv_upgrade 
1.42 Perl_sv_catpvn_flags 
1.42 Perl_free_tmps 
1.32 Perl_pp_helem 
1.22 Perl_sv_catsv_flags 
1.22 Perl_pp_pushmark 

 
401.bzip2 
 

Invocation: 401-bzip2-byoudoin-5 
% time name 
22.49 BZ2_compressBlock 
20.19 BZ2_blockSort 
15.87 mainGtU 
14.23 BZ2_decompress 
12.48 BZ2_bzDecompress 
11.70 fallbackSort 
1.92 handle_compress 

 

Invocation: 401-bzip2-input.combined-80 
% time name 
37.28 BZ2_blockSort 
14.12 mainGtU 
12.76 BZ2_bzDecompress 
10.99 BZ2_compressBlock 
10.94 BZ2_decompress 
9.50 fallbackSort 
2.81 handle_compress 

 

Invocation: 401-bzip2-input.program-10 
% time name 
35.70 BZ2_blockSort 
19.32 BZ2_compressBlock 
18.67 BZ2_decompress 
11.51 BZ2_bzDecompress 
8.47 mainGtU 
3.77 handle_compress 
1.14 bsW 

 
403.gcc 
 

Invocation: 403-gcc-integrate 
% time name 

5.46 init_alias_analysis 
3.01 bitmap_operation 
2.77 propagate_one_insn 
2.58 reg_is_remote_constant_p 
2.20 ggc_mark_rtx_children_1 
2.03 approx_reg_cost 
1.91 note_stores 
1.70 for_each_rtx 
1.66 cse_insn 

1.41 ggc_set_mark 
1.38 sbitmap_vector_alloc 
1.31 mark_set_1 
1.29 reg_scan 
1.26 find_basic_blocks 
1.20 reg_scan_mark_refs 
1.16 bitmap_set_bit 
1.12 propagate_block 
1.12 mark_used_regs 
1.09 find_reg_note 
1.03 convert_to_ssa 

 
429.mcf 
 

Invocation: 429-mcf-inp.in 
% time name 
56.91 price_out_impl 
27.45 primal_bea_mpp 
6.12 refresh_potential 
4.38 replace_weaker_arc 
1.32 update_tree 

 
445.gobmk 
 

Invocation: 445-gobmk-arb.tst 
% time name 

8.68 do_play_move 
6.27 fastlib 
5.52 order_moves 
5.12 incremental_order_moves 
4.97 dfa_matchpat_loop 
3.71 assimilate_string 
3.48 approxlib 
3.44 do_find_defense 
3.24 hashtable_search 
3.09 popgo 
2.96 is_self_atari 
2.88 matchpat_loop 
2.77 hashtable_clear 
2.60 compute_connection_distances 
2.59 do_attack 
2.41 update_liberties 
2.38 chainlinks2 
2.24 do_get_read_result 
1.96 do_find_superstring 
1.80 count_common_libs 

 

Invocation: 445-gobmk-arend.tst 
% time name 
12.76 do_play_move 
6.66 fastlib 
6.62 compute_connection_distances 
5.07 incremental_order_moves 
5.01 order_moves 
4.10 dfa_matchpat_loop 
3.73 popgo 
3.65 assimilate_string 
2.93 hashtable_search 
2.81 approxlib 
2.33 get_next_move_from_list 
2.24 do_find_defense 
2.10 is_self_atari 
2.06 accumulate_influence 
1.91 do_attack 
1.86 chainlinks2 
1.70 do_get_read_result 
1.63 remove_liberty 
1.53 is_suicide 
1.51 count_common_libs 

 

Invocation: 445-gobmk-arion.tst 
% time name 

9.87 do_play_move 
6.43 fastlib 
5.28 order_moves 
4.99 dfa_matchpat_loop 
4.86 compute_connection_distances 
4.77 incremental_order_moves 
3.89 hashtable_search 
3.32 assimilate_string 
3.11 approxlib 
3.04 popgo 
2.98 do_find_defense 
2.94 accumulate_influence 
2.40 hashtable_partially_clear 
2.38 do_attack 
2.24 is_self_atari 
2.22 chainlinks2 



SPEC CPUint2006 characterization 

  27 

2.00 do_get_read_result 
1.86 update_liberties 
1.82 matchpat_loop 
1.71 count_common_libs 

 

Invocation: 445-gobmk-atari.tst 
% time name 

8.36 do_play_move 
6.16 fastlib 
5.67 hashtable_clear 
5.07 dfa_matchpat_loop 
4.60 order_moves 
4.58 incremental_order_moves 
3.80 matchpat_loop 
3.71 assimilate_string 
3.51 hashtable_search 
3.02 do_attack 
3.00 do_find_defense 
2.91 approxlib 
2.91 is_self_atari 
2.91 popgo 
2.49 do_get_read_result 
2.22 update_liberties 
2.13 chainlinks2 
1.73 propose_edge_moves 
1.62 accumulate_influence 
1.58 count_common_libs 

 

Invocation: 445-gobmk-blunder.tst 
% time name 
16.44 hashtable_clear 
9.48 matchpat_loop 
6.38 do_play_move 
4.68 fastlib 
3.66 order_moves 
3.51 incremental_order_moves 
3.48 dfa_matchpat_loop 
2.78 assimilate_string 
2.72 do_find_defense 
2.66 popgo 
2.40 do_attack 
2.31 accumulate_influence 
2.17 do_get_read_result 
2.14 approxlib 
2.14 compute_connection_distances 
2.11 hashtable_search 
1.99 is_self_atari 
1.70 update_liberties 
1.58 store_persistent_reading_cache 
1.35 count_common_libs 

 

Invocation: 445-gobmk-buzco.tst 
% time name 

9.86 do_play_move 
6.80 fastlib 
5.49 order_moves 
5.30 incremental_order_moves 
4.55 dfa_matchpat_loop 
3.97 hashtable_search 
3.43 assimilate_string 
3.17 popgo 
3.16 approxlib 
3.08 accumulate_influence 
2.75 do_find_defense 
2.64 compute_connection_distances 
2.62 do_attack 
2.33 chainlinks2 
2.22 is_self_atari 
2.21 hashtable_partially_clear 
2.17 do_get_read_result 
1.79 update_liberties 
1.67 count_common_libs 
1.45 matchpat_loop 

 

Invocation: 445-gobmk-nicklas2.tst 
% time name 

7.90 do_play_move 
6.35 fastlib 
5.53 order_moves 
5.47 incremental_order_moves 
4.29 hashtable_clear 
4.22 hashtable_search 
3.87 approxlib 
3.61 assimilate_string 
3.55 do_find_defense 
3.30 do_attack 
3.19 dfa_matchpat_loop 
2.97 popgo 
2.84 do_get_read_result 
2.76 is_self_atari 
2.35 chainlinks2 

2.33 update_liberties 
2.27 propose_edge_moves 
1.96 count_common_libs 
1.53 do_find_superstring 
1.49 get_next_move_from_list 

 

Invocation: 445-gobmk-nicklas4.tst 
% time name 

9.84 do_play_move 
9.29 dfa_matchpat_loop 
6.23 fastlib 
4.79 order_moves 
4.61 incremental_order_moves 
4.05 compute_connection_distances 
3.55 hashtable_search 
3.42 assimilate_string 
3.07 popgo 
2.63 approxlib 
2.57 do_find_defense 
2.21 do_attack 
2.02 is_self_atari 
1.94 do_get_read_result 
1.87 chainlinks2 
1.80 matchpat_loop 
1.79 accumulate_influence 
1.76 get_next_move_from_list 
1.68 compute_primary_domains 
1.54 update_liberties 

 

456.hmmer 
 

Invocation: 456-hmmer-leng100 
% time name 
95.75 P7Viterbi 
1.94 sre_random 
1.74 FChoose 

 

458.sjeng 
 

Invocation: 458-sjeng-train 
% time name 

20.1 std_eval 
8.04 gen 
6.52 setup_attackers 
5.15 QProbeTT 
5.01 remove_one 
4.32 search 
4.23 ProbeTT 
4.12 Pawn 
4.08 order_moves 
3.60 checkECache 
3.59 push_slidE 
3.58 rook_mobility 
3.20 bishop_mobility 
3.04 is_attacked 
2.64 make 
1.98 Rook 
1.96 unmake 
1.67 check_legal 
1.42 see 
1.39 Bishop 

 

462.libquantum 
 

Invocation: 462-libquantum-143-25 
% time name 
59.15 quantum_toffoli 
15.33 quantum_sigma_x 
13.84 quantum_cnot 
3.95 quantum_swaptheleads 
3.79 __umoddi3 
2.54 quantum_state_collapse 

 

464.h264ref 
 

Invocation: 464-h264ref-foreman-train 
% time name 
25.96 SetupFastFullPelSearch 
21.54 FastFullPelBlockMotionSearch 
11.90 SATD 
6.84 FastPelY_14 
6.67 SubPelBlockMotionSearch 
3.68 SetupLargerBlocks 
3.54 dct_luma 
3.23 UMVLine16Y_11 
2.58 FastLine16Y_11 
1.25 BlockMotionSearch 
1.20 UMVPelY_14 
1.00 getNonAffNeighbour 
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471.omnetpp 
 

Invocation: 471-omnetpp-train 
% time name 
21.92 cMessageHeap::shiftup 
8.87 cMessageHeap::insert 
4.76 cObject::setOwner 
4.30 cModule::findGate 
3.52 cGate::deliver 
3.20 TCmdenvApp::simulate 
2.82 EtherMAC::printState 
1.94 opp_strdup 
1.86 EtherMAC::processMsgFromNetwork 
1.70 EtherMAC::handleMessage 
1.52 EtherBus::handleMessage 
1.50 cSimpleModule::scheduleAt 
1.46 cMessage::operator= 
1.42 EtherMAC::processReceivedDataFrame 
1.39 cSimulation::doOneEvent 
1.36 cSimulation::selectNextModule 
1.29 cObject::~cObject 
1.23 cArray::get 
1.21 cMessageHeap::getFirst 
1.17 TOmnetApp::checkTimeLimits 

 
473.astar 
 

Invocation: 473-astar-Biglakes 
% time name 
35.27 wayobj::makebound2 
15.23 way2obj::releasepoint 
12.17 regwayobj::isaddtobound 
11.86 regwayobj::makebound2 
10.85 regmngobj::getregfillnum 
2.88 way2obj::releasebound 
2.42 way2obj::isaddtobound 
2.19 way2obj::addtobound 
1.69 regboundobj::makebound2 
1.18 regmngobj::defineneighborhood1 

 

Invocation: 473-astar-rivers1 
% time name 
39.97 wayobj::makebound2 
23.57 way2obj::releasepoint 
11.11 regwayobj::makebound2 
6.30 regwayobj::isaddtobound 
5.73 regmngobj::getregfillnum 
4.66 way2obj::releasebound 
3.60 way2obj::addtobound 
2.82 way2obj::isaddtobound 

 
483.xalan 
 

Invocation: 483-xalan-train 
% time name 

4.41 xalanc_1_8::VariablesStack::findEntry 
3.52 xalanc_1_8::FunctionSubstring::execute 
3.37 xalanc_1_8::XPath::executeMore 
3.23 xalanc_1_8::XalanDOMString::equals 
3.04 xalanc_1_8::XalanDOMString::equals 
2.90 xalanc_1_8::XalanReferenceCountedObject::addRefer

ence 
2.53 xalanc_1_8::XalanReferenceCountedObject::removeRe

ference 
2.47 xalanc_1_8::XalanBitmap::isSet 
2.41 xalanc_1_8::DoubleSupport::round 
2.30 xalanc_1_8::XPath::runFunction 
2.13 xalanc_1_8::XObjectFactoryDefault::doReturnObject 
2.02 __gnu_cxx::__normal_iterator 
1.66 xalanc_1_8::StylesheetExecutionContextDefault::ge

tParams 
1.43 __gnu_cxx::__normal_iterator 
1.43 xalanc_1_8::ElemTemplateElement::executeChildren 
1.25 xalanc_1_8::VariablesStack::findXObject 
1.24 xalanc_1_8::XStringCachedAllocator::createString 
1.21 xalanc_1_8::XPath::variable 
1.18 xalanc_1_8::ReusableArenaBlock::allocateBlock() 
1.16 xalanc_1_8::XalanDOMString::erase 

 

 
REF workload 
 
400.perlbench 
 

Invocation: 400-perlbench-checkspam.pl 
% time name 
30.23 S_regmatch 
12.33 S_find_byclass 
4.99 S_regtry 
3.78 S_hv_fetch_common 
2.81 Perl_pp_entersub 
2.70 Perl_leave_scope 
2.62 Perl_pp_padsv 
2.45 Perl_pp_helem 
2.22 Perl_pp_nextstate 
2.18 Perl_sv_setsv_flags 
1.77 Perl_pp_rv2hv 
1.52 Perl_pp_match 
1.45 Perl_save_alloc 
1.22 Perl_pp_and 
1.13 Perl_regexec_flags 
1.01 Perl_fbm_instr 
1.01 S_share_hek_flags 

 

Invocation: 400-perlbench-diffmail.pl 
% time name 
17.56 S_regmatch 
6.02 Perl_sv_setsv_flags 
5.75 Perl_regexec_flags 
4.22 Perl_sv_clear 
4.06 Perl_sv_upgrade 
2.91 Perl_pp_padsv 
2.67 Perl_leave_scope 
2.54 Perl_sv_free 
2.51 S_regtry 
2.45 S_hv_fetch_common 
2.32 Perl_sv_grow 
2.01 S_regrepeat 
2.00 Perl_pp_nextstate 
1.97 Perl_sv_setpvn 
1.86 Perl_pp_split 
1.66 Perl_pp_entersub 
1.62 Perl_free_tmps 
1.48 Perl_pp_helem 
1.40 S_find_byclass 
1.36 Perl_save_alloc 

 

Invocation: 400-perlbench-splitmail.pl 
% time name 
53.98 S_regmatch 
4.19 S_reginclass 
2.95 S_regtry 
2.87 S_find_byclass 
2.47 Perl_leave_scope 
1.74 Perl_save_alloc 
1.65 Perl_pp_gvsv 
1.58 Perl_pp_match 
1.48 Perl_sv_setsv_flags 
1.48 Perl_pp_padsv 
1.40 Perl_pp_aelem 
1.16 Perl_regexec_flags 
1.15 S_hv_fetch_common 
1.14 Perl_pp_and 
1.11 Perl_pp_nextstate 
1.07 MD5Transform 

 
 
401.bzip2 
 

Invocation: 401-bzip2-chicken-30 
% time name 
43.84 fallbackSort 
14.26 BZ2_compressBlock 
12.75 mainGtU 
10.46 BZ2_blockSort 
8.93 BZ2_decompress 
7.82 BZ2_bzDecompress 
1.21 handle_compress 

 

Invocation: 401-bzip2-input.combined-200 
% time name 
37.90 BZ2_blockSort 
13.82 mainGtU 
13.12 BZ2_bzDecompress 
11.26 BZ2_decompress 
11.14 BZ2_compressBlock 
8.57 fallbackSort 
2.51 handle_compress 
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Invocation: 401-bzip2-input.program-280 
% time name 
35.91 BZ2_blockSort 
19.69 BZ2_compressBlock 
18.98 BZ2_decompress 
10.9 BZ2_bzDecompress 
8.17 mainGtU 
3.60 handle_compress 
1.21 bsW 

 

Invocation: 401-bzip2-input.source-280 
% time name 
43.32 BZ2_blockSort 
14.26 BZ2_bzDecompress 
14.17 mainGtU 
11.81 BZ2_decompress 
10.91 BZ2_compressBlock 
2.77 handle_compress 

 

Invocation: 401-bzip2-liberty-30 
% time name 
63.36 fallbackSort 
20.50 mainGtU 
4.69 BZ2_compressBlock 
4.16 BZ2_bzDecompress 
3.77 BZ2_decompress 
2.59 BZ2_blockSort 

 

Invocation: 401-bzip2-text-280 
% time name 
39.13 BZ2_blockSort 
38.02 mainGtU 
7.30 BZ2_bzDecompress 
6.58 BZ2_decompress 
5.60 BZ2_compressBlock 
2.17 handle_compress 

 
403.gcc 
 

Invocation: 403-gcc-166 
% time name 
27.08 reg_is_remote_constant_p 
7.14 compute_transp 
5.85 bitmap_operation 
5.81 clear_table 
2.96 single_set_2 
2.87 sbitmap_union_of_diff 
1.88 delete_null_pointer_checks 
1.65 init_alias_analysis 
1.50 loop_regs_scan 
1.36 sbitmap_vector_alloc 
1.25 splay_tree_splay_helper 
1.08 sbitmap_intersection_of_preds 
1.01 canon_rtx 

 

Invocation: 403-gcc-200 
% time name 

5.64 bitmap_operation 
5.46 ggc_mark_rtx_children_1 
4.10 ggc_set_mark 
4.03 reg_is_remote_constant_p 
3.64 init_alias_analysis 
2.29 loop_regs_scan 
2.20 ggc_mark_rtx_children 
1.87 note_stores 
1.62 try_combine 
1.46 propagate_one_insn 
1.37 cse_insn 
1.37 compute_transp 
1.30 ggc_pop_context 
1.26 reg_scan_mark_refs 
1.20 for_each_rtx 
1.19 htab_traverse 
1.10 approx_reg_cost 
1.09 clear_table 
1.09 ggc_alloc 
1.08 convert_to_ssa 

 

Invocation: 403-gcc-cp-decl 
% time name 
12.56 compute_transp 
6.50 bitmap_operation 
5.84 clear_table 
3.75 canon_rtx 
3.31 delete_null_pointer_checks 
2.89 find_base_term 
2.65 sbitmap_union_of_diff 
2.48 mems_in_disjoint_alias_sets_p 
2.16 ix86_find_base_term 
1.94 expunge_block 

1.72 init_alias_analysis 
1.71 nonoverlapping_memrefs_p 
1.62 ggc_mark_rtx_children_1 
1.61 sbitmap_vector_alloc 
1.50 compute_dominance_frontiers_1 
1.39 htab_traverse 
1.36 sbitmap_zero 
1.35 try_combine 
1.23 propagate_one_insn 
1.16 ggc_set_mark 

 

Invocation: 403-gcc-expr2 
% time name 
18.09 clear_table 
9.29 compute_transp 
6.18 bitmap_operation 
5.88 loop_regs_scan 
4.33 delete_null_pointer_checks 
3.08 expunge_block 
2.46 sbitmap_union_of_diff 
2.10 htab_traverse 
1.72 sbitmap_vector_alloc 
1.51 init_alias_analysis 
1.38 sbitmap_zero 
1.29 compute_dominance_frontiers_1 
1.22 reg_is_remote_constant_p 
1.22 in_expr_list_p 
1.01 mems_in_disjoint_alias_sets_p 

 

Invocation: 403-gcc-expr 
% time name 
19.03 clear_table 
10.77 compute_transp 
6.12 bitmap_operation 
4.34 loop_regs_scan 
4.13 delete_null_pointer_checks 
3.15 htab_traverse 
3.09 expunge_block 
2.59 sbitmap_union_of_diff 
1.59 sbitmap_vector_alloc 
1.49 compute_dominance_frontiers_1 
1.43 mems_in_disjoint_alias_sets_p 
1.42 init_alias_analysis 
1.34 sbitmap_zero 
1.25 scan_loop 
1.20 canon_rtx 

 

Invocation: 403-gcc-g23 
% time name 
24.92 reg_is_remote_constant_p 
11.68 htab_traverse 
10.35 clear_table 
4.90 bitmap_operation 
4.43 delete_null_pointer_checks 
4.26 fixup_var_refs_insns 
3.58 fixup_var_refs_1 
3.13 single_set_2 
2.57 expunge_block 
2.13 fixup_var_refs_insn 
1.89 htab_empty 
1.79 loop_regs_scan 
1.77 sbitmap_union_of_diff 
1.74 try_combine 
1.08 compute_dominance_frontiers_1 

 

Invocation: 403-gcc-s04 
% time name 
22.59 clear_table 
12.17 loop_regs_scan 
10.04 reg_is_remote_constant_p 
7.09 bitmap_operation 
6.51 compute_transp 
4.42 delete_null_pointer_checks 
2.45 sbitmap_union_of_diff 
1.43 sbitmap_vector_alloc 
1.36 find_base_term 
1.33 expunge_block 
1.31 single_set_2 
1.21 mems_in_disjoint_alias_sets_p 
1.20 sbitmap_zero 
1.18 canon_rtx 

 

Invocation: 403-gcc-scilab 
% time name 

5.49 ggc_mark_rtx_children_1 
4.46 ggc_set_mark 
4.40 init_alias_analysis 
2.53 ggc_mark_rtx_children 
2.34 bitmap_operation 
2.30 ggc_pop_context 
2.21 propagate_one_insn 
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1.91 cse_insn 
1.90 note_stores 
1.81 approx_reg_cost 
1.68 for_each_rtx 
1.62 constrain_operands 
1.36 ggc_mark_trees 
1.22 reg_scan_mark_refs 
1.20 ggc_alloc 
1.13 find_reloads 
1.04 reg_is_remote_constant_p 
1.00 bitmap_set_bit 

 

Invocation: 403-gcc-typeck 
% time name 
17.94 clear_table 
15.10 loop_regs_scan 
5.69 compute_transp 
5.56 bitmap_operation 
2.80 sbitmap_union_of_diff 
2.75 expunge_block 
2.69 delete_null_pointer_checks 
1.50 init_alias_analysis 
1.46 reg_is_remote_constant_p 
1.34 sbitmap_vector_alloc 
1.21 scan_loop 
1.18 compute_dominance_frontiers_1 
1.11 sbitmap_zero 

 
 
429.mcf 
 

Invocation: 429-mcf-inp.in 
% time name 
20.53 refresh_potential 
19.94 price_out_impl 
18.68 primal_bea_mpp 
10.64 update_tree 
9.82 replace_weaker_arc 
5.59 bea_is_dual_infeasible 
4.45 primal_iminus 
2.76 sort_basket 
2.15 insert_new_arc 
1.29 write_circulations 
1.14 dual_feasible 
1.01 suspend_impl 

 
 
445.gobmk 
 

Invocation: 445-gobmk-13x13.tst 
% time name 
10.14 do_play_move 
6.87 dfa_matchpat_loop 
6.25 fastlib 
5.06 incremental_order_moves 
5.06 order_moves 
3.55 compute_connection_distances 
3.34 hashtable_search 
3.31 assimilate_string 
3.16 popgo 
3.14 get_next_move_from_list 
2.80 approxlib 
2.61 do_find_defense 
2.36 do_attack 
2.32 is_self_atari 
1.98 do_get_read_result 
1.90 chainlinks2 
1.77 compute_primary_domains 
1.64 update_liberties 
1.52 count_common_libs 
1.48 find_persistent_reading_cache_entry 

 

Invocation: 445-gobmk-nngs.tst 
% time name 

10.8 do_play_move 
6.68 fastlib 
5.24 dfa_matchpat_loop 
5.17 order_moves 
5.15 incremental_order_moves 
4.06 compute_connection_distances 
3.46 hashtable_search 
3.41 assimilate_string 
3.32 popgo 
2.96 approxlib 
2.74 accumulate_influence 
2.72 do_find_defense 
2.43 do_attack 
2.21 is_self_atari 

2.15 chainlinks2 
2.01 do_get_read_result 
1.64 update_liberties 
1.59 count_common_libs 
1.55 matchpat_loop 
1.40 hashtable_partially_clear 

 

Invocation: 445-gobmk-score2.tst 
% time name 
13.59 matchpat_loop 
8.77 hashtable_clear 
7.30 do_play_move 
5.06 dfa_matchpat_loop 
5.05 accumulate_influence 
4.99 compute_connection_distances 
4.10 fastlib 
3.14 incremental_order_moves 
3.10 order_moves 
2.41 assimilate_string 
2.28 popgo 
2.14 update_liberties 
1.90 approxlib 
1.79 hashtable_search 
1.60 do_find_defense 
1.49 is_self_atari 
1.47 do_attack 
1.27 do_get_read_result 
1.12 chainlinks2 
1.07 count_common_libs 

 

Invocation: 445-gobmk-trevorc.tst 
% time name 
10.98 do_play_move 
6.54 fastlib 
5.37 incremental_order_moves 
5.15 order_moves 
4.96 compute_connection_distances 
4.20 dfa_matchpat_loop 
3.65 assimilate_string 
3.44 popgo 
3.32 hashtable_search 
3.01 approxlib 
2.68 do_find_defense 
2.45 do_attack 
2.37 is_self_atari 
2.10 do_get_read_result 
2.07 hashtable_clear 
1.90 chainlinks2 
1.85 get_next_move_from_list 
1.76 update_liberties 
1.64 count_common_libs 
1.50 is_suicide 

 

Invocation: 445-gobmk-trevord.tst 
% time name 
12.75 do_play_move 
7.85 compute_connection_distances 
6.63 fastlib 
4.97 incremental_order_moves 
4.93 order_moves 
3.83 assimilate_string 
3.75 popgo 
3.52 dfa_matchpat_loop 
3.04 accumulate_influence 
2.82 approxlib 
2.60 hashtable_search 
2.27 matchpat_loop 
2.10 do_find_defense 
1.98 is_self_atari 
1.76 chainlinks2 
1.75 do_attack 
1.70 remove_liberty 
1.60 is_suicide 
1.55 do_get_read_result 
1.55 count_common_libs 

 
 
456.hmmer 
 

Invocation: 456-hmmer-retro 
% time name 
95.19 P7Viterbi 
2.24 sre_random 
1.96 FChoose 

 

Invocation: 456-hmmer-swiss41 
% time name 
98.97 P7Viterbi 
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458.sjeng 
 

Invocation: 458-sjeng-ref 
% time name 
19.57 std_eval 
8.10 setup_attackers 
8.01 gen 
5.56 remove_one 
4.94 order_moves 
4.74 search 
4.17 is_attacked 
4.10 push_slidE 
4.00 rook_mobility 
3.67 Pawn 
3.41 checkECache 
3.37 make 
3.12 ProbeTT 
2.91 bishop_mobility 
2.47 unmake 
2.02 check_legal 
1.84 see 
1.51 qsearch 
1.47 Rook 
1.07 f_in_check 

 
462.libquatum 
 

Invocation: 462-libquantum-1397-8 
% time name 
37.96 quantum_toffoli 
21.41 quantum_cnot 
21.02 quantum_sigma_x 
8.98 quantum_swaptheleads 
5.53 __umoddi3 
2.26 quantum_state_collapse 
1.47 quantum_gate1 

 
464.h264ref 
 

Invocation: 464-h264ref-foreman-ref1 
% time name 
25.69 SetupFastFullPelSearch 
21.43 FastFullPelBlockMotionSearch 
11.94 SATD 
6.99 FastPelY_14 
6.64 SubPelBlockMotionSearch 
3.73 SetupLargerBlocks 
3.60 dct_luma 
3.28 UMVLine16Y_11 
2.51 FastLine16Y_11 
1.27 UMVPelY_14 
1.18 BlockMotionSearch 

 

Invocation: 464-h264ref-foreman-ref2 
% time name 
22.02 SetupFastFullPelSearch 
13.47 FastFullPelBlockMotionSearch 
10.47 SATD 
6.93 dct_luma 
5.65 SubPelBlockMotionSearch 
5.32 FastPelY_14 
4.20 biari_encode_symbol 
3.03 SetupLargerBlocks 
2.86 UMVLine16Y_11 
2.32 FastLine16Y_11 
1.56 getNonAffNeighbour 
1.43 Mode_Decision_for_4x4IntraBlocks 
1.26 OneComponentChromaPrediction4x4 
1.15 UMVPelY_14 
1.08 dct_chroma 

 

Invocation: 464-h264ref-sss-ref 
% time name 
26.36 SetupFastFullPelSearch 
10.58 FastFullPelBlockMotionSearch 
10.14 SATD 
7.63 dct_luma 
6.29 FastPelY_14 
5.71 SubPelBlockMotionSearch 
3.34 SetupLargerBlocks 
2.67 FastLine16Y_11 
1.88 biari_encode_symbol 
1.76 getNonAffNeighbour 
1.69 Mode_Decision_for_4x4IntraBlocks 
1.37 dct_chroma 

1.34 OneComponentChromaPrediction4x4 
1.25 UMVLine16Y_11 
1.14 BlockMotionSearch 
1.13 store_coding_state 
1.05 get_mb_block_pos 
1.03 RDCost_for_4x4IntraBlocks 
1.00 find_sad_16x16 

 
471.omnetpp 
 

Invocation: 471-omnetpp-ref 
% time name 
19.52 cMessageHeap::shiftup 
7.58 cGate::deliver 
4.66 cSimulation::selectNextModule 
4.41 cModule::findGate 
3.95 cObject::setOwner 
3.94 EtherMAC::handleMessage 
3.85 cOutVector::record 
3.70 cSubModIterator::operator++ 
3.31 cFileOutputVectorManager::record 
2.93 cMessageHeap::insert 
2.54 cArray::get 
2.54 cSimulation::setContextModule 
2.25 cMessage::operator= 
2.18 cSimpleChannel::deliver 
2.06 cObject::~cObject 
1.89 EtherMAC::printState 
1.50 cQueue::remove_qelem 
1.35 cMessageHeap::getFirst 
1.29 cSimpleModule::arrived 
1.14 cSimpleModule::sendDelayed 

 
473.astar 
 

Invocation: 473-astar-Biglakes 
% time name 
25.63 way2obj::releasepoint 
24.87 wayobj::makebound2 
12.12 regwayobj::isaddtobound 
11.02 regwayobj::makebound2 
9.44 regmngobj::getregfillnum 
4.73 way2obj::releasebound 
4.72 way2obj::isaddtobound 
2.93 way2obj::addtobound 

 

Invocation: 473-astar-rivers 
% time name 
40.64 wayobj::makebound2 
25.82 way2obj::releasepoint 
9.92 regwayobj::makebound2 
9.23 regmngobj::getregfillnum 
5.10 way2obj::releasebound 
3.69 way2obj::addtobound 
2.89 way2obj::isaddtobound 
1.61 regwayobj::isaddtobound 

 
483.xalan 
 

Invocation: 483-xalan-ref 
% time name 
10.70 __gnu_cxx::__normal_iterator 
9.59 xercesc_2_5::ValueStore::isDuplicateOf 
9.50 xercesc_2_5::ValueStore::contains 
8.01 xalanc_1_8::XStringCachedAllocator::destroy 
6.32 xercesc_2_5::BaseRefVectorOf::elementAt 
4.98 xercesc_2_5::ValueVectorOf::size 
4.54 xalanc_1_8::ReusableArenaBlock::ownsObject 
3.85 xercesc_2_5::ValueVectorOf::elementAt 
2.84 xercesc_2_5::NameDatatypeValidator::compare 
1.90 xalanc_1_8::XStringCachedAllocator::createString 
1.63 xercesc_2_5::BaseRefVectorOf::elementAt 
1.54 xalanc_1_8::ReusableArenaBlock::blockAvailable 
1.52 xalanc_1_8::XalanDOMStringCache::release 
1.40 Xalanc_1_8::VariablesStack::findEntry 
1.34 xalanc_1_8::FunctionSubstring::execute 
1.20 Xalanc_1_8::XalanDOMString::equals 
1.14 xalanc_1_8::XPath::executeMore 
1.10 xalanc_1_8::XalanReferenceCountedObject::removeRef

erence 
1.06 xalanc_1_8::ElemTemplateElement::executeChildren 

 

 
 

 


